OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 30 — Oct. 20, 2002
  • pp: 6289–6306

Bidirectional Reflectance of Oceanic Waters: Accounting for Raman Emission and Varying Particle Scattering Phase Function

André Morel, David Antoine, and Bernard Gentili  »View Author Affiliations

Applied Optics, Vol. 41, Issue 30, pp. 6289-6306 (2002)

View Full Text Article

Acrobat PDF (524 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The bidirectionality of the upward radiance field in oceanic case 1 waters has been reinvestigated by incorporation of revised parameterizations of inherent optical properties as a function of the chlorophyll concentration (Chl), considering Raman scattering and making the particle phase function shape (β˜p) continuously varying along with the Chl. Internal consistency is thus reached, as the decrease in backscattering probability (for increasing Chl) translates into a correlative change in β˜p. The single particle phase function (previously used) precluded a realistic assessment of bidirectionality for waters with Chl > 1 mg m−3. This limitation is now removed. For low Chl, Raman emissions significantly affect the radiance field. For moderate Chl (0.1–1 mg m−3), new and previous bidirectional parameters remain close. The ocean reflectance anisotropy has implications in ocean color remote-sensing problems, in derivation of coherent water-leaving radiances, in associated calibration-validation activities, and in the merging of data obtained under various geometrical configurations.

© 2002 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.4210) Scattering : Multiple scattering
(290.5840) Scattering : Scattering, molecules
(290.5850) Scattering : Scattering, particles
(290.5860) Scattering : Scattering, Raman

André Morel, David Antoine, and Bernard Gentili, "Bidirectional Reflectance of Oceanic Waters: Accounting for Raman Emission and Varying Particle Scattering Phase Function," Appl. Opt. 41, 6289-6306 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
  2. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
  3. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4862 (1996).
  4. K. J. Voss, “Electro-optic camera system for measurement of the underwater radiance distribution,” Opt. Eng. 28, 241–247 (1989).
  5. A. Morel, K. J. Voss, and B. Gentili, “Bidirectional reflectance of oceanic waters: a comparison of modeled and measured upward radiance fields,” J. Geophys. Res. 100, 13143–13151 (1995).
  6. H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22, 275–295 (2001).
  7. T. J. Petzold, “Volume scattering functions for selected ocean waters,” Rep. 510, Ref. 72–78 (Scripps Institution of Oceanography, La Jolla, Calif., 1972).
  8. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7884–7504 (1993).
  9. J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350–356 (1984).
  10. H. R. Gordon, “Dependence of the diffuse reflectance of natural waters on the sun angle,” Limnol. Oceanogr. 34, 1484–1489 (1989).
  11. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
  12. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
  13. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case 1 waters),” J. Geophys. Res. 93, 10749–10768 (1988).
  14. O. Ulloa, S. Sathyendranath, and T. Platt, “Effect of the particle-size distribution on the backscattering ratio in seawater,” Appl. Opt. 33, 7070–7077 (1994).
  15. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in Case I and Case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
  16. H. R. Gordon and O. B. Brown, “A theoretical model of light scattering by Sargasso Sea particulates,” Limnol. Oceanogr. 17, 826–832 (1972).
  17. O. B. Brown and H. R. Gordon, “Two component Mie scattering models of Sargasso Sea particles,” Appl. Opt. 12, 2461–2465 (1973).
  18. J. R. V. Zaneveld, D. M. Roach, and H. Pak, “The determination of the index of refraction distribution of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974).
  19. O. V. Kopelevich, “Small parameter model of optical properties of seawater,” in Ocean Optics, A. S. Monin, ed. (Nauka, Moscow, 1983), Vol. 1, Chap. 8 (in Russian).
  20. K. S. Shifrin, Physical Optics of Ocean Water (American Institute of Physics, New York, 1988).
  21. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  22. V. I. Haltrin and G. Kattawar, “Light fields with Raman scattering and fluorescence in sea water,” Tech. Rep. (Department of Physics, Texas A & M University, College Station, Texas, 1991).
  23. D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
  24. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18, 2223–2248 (1996).
  25. H. Claustre, A. Morel, S. B. Hooker, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Queginer, and S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29, 10.1029/2001GL014056 (2002).
  26. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
  27. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, New York, 1974), Chap. 1.
  28. H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in Case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
  29. H. R. Gordon and D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
  30. C. Cox and W. Munk, “Some problems in optical oceanography,” J. Mar. Res. 14, 63–78 (1955).
  31. W. W. Gregg and K. L. Carder, “A simple spectral solar model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990).
  32. J. S. Bartlett, K. J. Voss, S. Sathyendranath, and A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998).
  33. H. Neckel and D. Labs, “The solar radiation between 3300 and 12500 Å,” Sol. Phys. 90, 205–258 (1984).
  34. J. L. Mueller and G. S. Fargion, eds., “Ocean optics protocols for satellite ocean color sensor validation, revision 3,” (NASA Goddard Space Flight Center, Greenbelt, Md., 2002).
  35. J. E. Tyler, “Radiance distribution as a function of depth in a underwater environment,” Bull. Scripps Inst. Oceanogr. 7, 363–412 (1960).
  36. J. E. Tyler and R. W. Preisendorfer, “Transmission of energy within the sea,” in The Sea, M. N. Hill, ed. (Wiley-Interscience, New York, 1962), Vol. 1, pp. 397–448.
  37. E. Aas and N. K. Hojerslev, “Analysis of underwater radiance observations: apparent optical properties and analytic functions describing the angular radiance distribution,” J. Geophys. Res. 104, 8015–8024 (1999).
  38. G. Zibordi and J.-F. Berthon, “Relationship between the Q-factor and seawater optical properties in a coastal region,” Limnol. Oceanogr. 46, 1130–1140 (2001).
  39. SeaWiFS (Orbital Sciences Corp., NASA) is an ocean color sensor, operating since September 1997. See also S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” NASA Tech. Memo. 104566 1, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).
  40. The PROSOPE cruise (4 September–4 October 1999), on board the research vessel Thalassa, started in Agadir, Morocco, and ended in Toulon, France.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited