OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 30 — Oct. 20, 2002
  • pp: 6307–6324

Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements

Luc R. Bissonnette, Gilles Roy, Laurent Poutier, Stewart G. Cober, and George A. Isaac  »View Author Affiliations

Applied Optics, Vol. 41, Issue 30, pp. 6307-6324 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (323 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multiple-field-of-view (MFOV) lidar measurement and solution technique has been developed to exploit the retrievable particle extinction and size information contained in the multiple-scattering contributions to aerosol lidar returns. We describe the proposed solution algorithm. The primary retrieved parameters are the extinction coefficient at the lidar wavelength and the effective particle diameter from which secondary products such as the extinction at other wavelengths and the liquid-water content (LWC) of liquid-phase clouds can be derived. The solutions are compared with true values in a series of Monte Carlo simulations and with in-cloud measurements. Good agreement is obtained for the simulations. For the field experiment, the retrieved effective droplet diameter and LWC for the available seven cases studied are on average 15% and 35% (worst case) smaller than the measured data, respectively. In the latter case, the analysis shows that the differences cannot be attributed solely to lidar inversion errors. Despite the limited penetration depth (150–300 m) of the lidar pulses, the results of the studied cases indicate that the retrieved lidar solutions remain statistically representative of measurements performed over the full cloud extent. Long-term MFOV lidar monitoring could thus become a practical and economical option for cloud statistical studies but more experimentation on more varied cloud conditions, especially for LWC, is still needed.

© 2002 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3640) Atmospheric and oceanic optics : Lidar
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3640) Remote sensing and sensors : Lidar
(290.1090) Scattering : Aerosol and cloud effects
(290.1310) Scattering : Atmospheric scattering

Original Manuscript: March 15, 2002
Revised Manuscript: June 14, 2002
Published: October 20, 2002

Luc R. Bissonnette, Gilles Roy, Laurent Poutier, Stewart G. Cober, and George A. Isaac, "Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt. 41, 6307-6324 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Sassen, G. G. Mace, Z. Wang, M. R. Poellet, S. M. Sekelsky, R. E. McIntosh, “Continental stratus clouds: a case study of coordinated remote sensing and aircraft measurements,” J. Atmos. Sci. 56, 2345–2358 (1999). [CrossRef]
  2. K. Sassen, “The polarization lidar technique: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991). [CrossRef]
  3. J. D. Klett, “Stable analytical inversion solutions for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef] [PubMed]
  4. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef] [PubMed]
  5. L. R. Bissonnette, “Sensitivity analysis of lidar inversion algorithms,” Appl. Opt. 25, 2122–2125 (1986). [CrossRef] [PubMed]
  6. C. M. R. Platt, T. Takashima, “Retrieval of water cloud properties from carbon dioxide lidar soundings,” Appl. Opt. 26, 1257–1263 (1987). [CrossRef]
  7. S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt. 34, 7019–7031 (1995). [CrossRef] [PubMed]
  8. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Stroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983). [CrossRef] [PubMed]
  9. J. T. Stroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2. Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983). [CrossRef]
  10. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990). [CrossRef] [PubMed]
  11. J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980). [CrossRef]
  12. Y. Sasano, H. Nakane, “Quantitative analysis of RHI lidar data by an iterative adjustment of the boundary condition term in the lidar solution,” Appl. Opt. 26, 615–616 (1987). [CrossRef] [PubMed]
  13. D. Gutkowicz-Krusin, “Multiangle lidar performance in the presence of horizontal inhomogeneities in atmospheric extinction and scattering,” Appl. Opt. 32, 3266–3272 (1993). [CrossRef] [PubMed]
  14. G. J. Kunz, G. de Leeuw, “Inversion of lidar signals with the slope method,” Appl. Opt. 32, 3249–3256 (1993). [CrossRef] [PubMed]
  15. G. Roy, G. Vallée, M. Jean, “Lidar-inversion technique based on total integrated backscatter calibrated curves,” Appl. Opt. 32, 6754–6763 (1993). [CrossRef] [PubMed]
  16. S. Elouragini, “Useful algorithms to derive the optical properties of clouds from a backscatter lidar return,” J. Mod. Opt. 42, 1439–1446 (1995). [CrossRef]
  17. R. J. Allen, C. M. R. Platt, “Lidar for multiple backscattering and depolarization observations,” Appl. Opt. 16, 3193–3199 (1977). [CrossRef] [PubMed]
  18. C. Flesia, P. Schwendimann, eds., Topical feature on Multiple-Scattering Lidar Experiments, Appl. Phys. B 60, 315–362 (1995).
  19. I. L. Katsev, E. P. Zege, A. S. Prikhach, I. N. Polonsky, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems,” J. Opt. Soc. Am. A 14, 1338–1346 (1997). [CrossRef]
  20. L. R. Bissonnette, D. L. Hutt, “Multiple scattering lidar,” Appl. Opt. 29, 5045–5046 (1990). [CrossRef] [PubMed]
  21. D. L. Hutt, L. R. Bissonnette, L. Durand, “Multiple field of view lidar returns from atmospheric aerosols,” Appl. Opt. 33, 2338–2348 (1994). [CrossRef] [PubMed]
  22. L. R. Bissonnette, D. L. Hutt, “Multiply scattered aerosol lidar returns: inversion method and comparison with in situ measurements,” Appl. Opt. 34, 6959–6975 (1995). [CrossRef] [PubMed]
  23. G. Roy, L. R. Bissonnette, C. Bastille, G. Vallée, “Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals,” Appl. Opt. 38, 5202–5211 (1999). [CrossRef]
  24. L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, G. A. Isaac, “Lidar remote sensing of cloud liquid water content and effective droplet diameter: retrieval method and comparison with Monte Carlo simulations and in situ measurements,” TR 2002-20 (Defence Research and Development Canada Establishment Valcartier, 2459 Pie XI Blvd. North, Val-Bélair, Québec G3J 1X5, Canada), to be published.
  25. E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998). [CrossRef]
  26. L. R. Bissonnette, “Multiple-scattering lidar equation,” Appl. Opt. 35, 6449–6465 (1996). [CrossRef] [PubMed]
  27. L. Poutier, “Evaluation de la technique de sondage par lidar à champs de vue multiples,” Technical Report No. RTS 2/05101 DOTA (ONERA, Office National d’Etudes et Recherches Aéronautiques, Centre de Toulouse, 2 ave Edouard Belin, 31055 Toulouse, France, 2001).
  28. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Appendix A.
  29. P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Monte-Carlo calculations of lidar returns: procedure and results,” Appl. Phys. B 60, 325–329 (1995). [CrossRef]
  30. C. M. R. Platt, “Remote sensing of high clouds III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981). [CrossRef]
  31. G. A. Isaac, S. G. Cober, J. W. Strapp, A. V. Korolev, A. Tremblay, D. L. Marcotte, “Recent Canadian research on aircraft in-flight icing,” Can. Aeronaut. Space J. 47(3), 213–221 (2001).
  32. G. A. Isaac, S. G. Cober, J. W. Strapp, D. Hudak, T. P. Ratvasky, D. L. Marcotte, F. Fabry, “Preliminary results from the Alliance Icing Research Study (AIRS),” paper AIAA-2001-0393, presented at the 39th Aerospace Science Meeting and Exhibit, Reno Nevada, 8–11 January 2001, (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).
  33. L. R. Bissonnette, G. Roy, F. Fabry, “Range-height scans of lidar depolarization for characterizing properties and phase of clouds and precipitation,” J. Atmos. Oceanic Technol. 18, 1429–1446 (2001). [CrossRef]
  34. G. Roy, L. R. Bissonnette, “Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation,” Appl. Opt. 40, 4770–4789 (2001). [CrossRef]
  35. S. G. Cober, G. A. Isaac, A. V. Korolev, J. W. Strapp, “Assessing cloud phase conditions,” J. Appl. Meteorol. 40, 1967–1983 (2001). [CrossRef]
  36. S. G. Cober, G. A. Isaac, A. V. Korolev, “Assessing the Rosemount icing detector with in-situ measurements,” J. Atmos. Oceanic Technol. 18, 515–528 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited