OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 30 — Oct. 20, 2002
  • pp: 6451–6462

Relative-Humidity Profiling in the Troposphere with a Raman Lidar

Ina Mattis, Albert Ansmann, Dietrich Althausen, Volker Jaenisch, Ulla Wandinger, Detlef Müller, Yuri F. Arshinov, Sergej M. Bobrovnikov, and Ilya B. Serikov  »View Author Affiliations


Applied Optics, Vol. 41, Issue 30, pp. 6451-6462 (2002)
http://dx.doi.org/10.1364/AO.41.006451


View Full Text Article

Acrobat PDF (277 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a Raman-lidar-based approach to acquiring profiles of the relative humidity of air. For this purpose we combined in one instrument the Raman-lidar techniques that are used for the profiling of water vapor and temperature. This approach enabled us to acquire, for the first time to our knowledge, vertical profiles of relative humidity through the entire troposphere exclusively from Raman-lidar data. The methods applied to determining the water-vapor mixing ratio, temperature, and relative humidity and the corresponding uncertainties caused by systematic errors and signal noise are presented. The lidar-derived profiles are compared with profiles measured with radiosondes. Radiosonde observations are also used to calibrate the Raman lidar. Close agreement of the profiles of relative humidity measured with lidar and those measured with radiosonde demonstrates the potential of this novel approach.

© 2002 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.7030) Atmospheric and oceanic optics : Troposphere
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.5860) Scattering : Scattering, Raman

Citation
Ina Mattis, Albert Ansmann, Dietrich Althausen, Volker Jaenisch, Ulla Wandinger, Detlef Müller, Yuri F. Arshinov, Sergej M. Bobrovnikov, and Ilya B. Serikov, "Relative-Humidity Profiling in the Troposphere with a Raman Lidar," Appl. Opt. 41, 6451-6462 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-30-6451


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. U. Leiterer, H. Dier, and T. Naebert, “Improvements in radiosonde humidity profiles using RS80/RS90 radiosondes of Vaisala,” Contrib. Atmos. Phys. 70, 319–336 (1997).
  2. D. Nagel, U. Leiterer, H. Dier, A. Kats, J. Reichardt, and A. Behrendt, “High accuracy humidity measurements using the standardized frequency method with a research upper-air sounding system,” Meteorol. Z. 10, 395–405 (2001).
  3. L. M. Miloshevich, H. Vömel, A. Paukkunen, A. J. Heymsfield, and S. J. Oltmans, “Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures,” J. Atmos. Ocean. Technol. 18, 135–156 (2001).
  4. D. M. A. Engelbart, “The use of profiling instrumentation for boundary-layer observations,” in Proceedings of the 5th International Symposium on Tropospheric Profiling: Needs and Technology, P. T. May, ed. (Australian Bureau of Meteorology Research Centre, Adelaide, Australia, 2000), pp. 365–367.
  5. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
  6. U. Wandinger, A. Ansmann, J. Reichardt, and T. Deshler, “Determination of stratospheric-aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar,” Appl. Opt. 34, 8315–8329 (1995).
  7. A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, J. Reichardt, and T. Deshler, “Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass, and surface area over central Europe at 53.4° N,” J. Atmos. Sci. 54, 2630–2641 (1997).
  8. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19,663–19,672 (1998).
  9. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, M. Poellot, and Y. J. Kaufman, “Raman lidar measurements of aerosol extinction and backscattering. 2. Derivation of aerosol real refractive index, single scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements,” J. Geophys. Res. 103, 19,673–19,690 (1998).
  10. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
  11. A. Ansmann, D. Althausen, U. Wandinger, K. Franke, D. Müller, F. Wagner, and J. Heintzenberg, “Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: a first case study,” Geophys. Res. Lett. 27, 963–966 (2000).
  12. D. Müller, F. Wagner, D. Althausen, U. Wandinger, and A. Ansmann, “Physical properties of the Indian aerosol plume derived from six-wavelength lidar observations on 25 March 1999 of the Indian Ocean Experiment,” Geophys. Res. Lett. 27, 1403–1406 (2000).
  13. K. Franke, A. Ansmann, D. Müller, D. Althausen, and F. Wagner, “One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar,” Geophys. Res. Lett. 28, 4559–4562 (2001).
  14. I. Mattis, A. Ansmann, D. Müller, U. Wandinger, and D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29, 10.1029/2002GL014721 (2002).
  15. D. D. Turner, R. A. Ferrare, L. A. Heilman Brasseur, W. F. Feltz, and T. P. Tooman, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Technol. 19, 37–50 (2002).
  16. G. Hänel, “An attempt to interpret the humidity dependencies of the aerosol extinction and scattering coefficients,” Atmos. Environ. 15, 403–406 (1976).
  17. V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
  18. E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
  19. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, and D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
  20. T. M. Weckwerth, V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, and R. M. Banta, “NCAR-NOAA lower-tropospheric water vapor workshop,” Bull. Am. Meteorol. Soc. 80, 2339–2357 (1999).
  21. V. Sherlock, A. Garnier, A. Hauchecorne, and P. Keckhut, “Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor,” Appl. Opt. 38, 5838–5850 (1999).
  22. V. Sherlock, A. Hauchecorne, and J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999).
  23. G. Poberaj, A. Assion, A. Fix, C. Kiemle, M. Wirth, and G. Ehret, “Airborne all-solid-state DIAL for water vapor measurements in the tropopause region,” in Advances in Laser Remote Sensing, A. Dabais, C. Loth, and J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 325–328.
  24. D. D. Turner, R. A. Ferrare, L. A. Heilman, and T. P. Tooman, “A two-year climatology of water vapor and aerosols in the lower troposphere measured by a Raman lidar,” in Advances in Laser Remote Sensing, A. Dabais, C. Loth, and J. Pelon, eds., (Ecole Polytechnique, Palaiseau, France, 2001), pp. 309–312.
  25. D. Bruneau, P. Quaglia, C. Flamant, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. II. First results,” Appl. Opt. 40, 3462–3475 (2001).
  26. C. L. Korb and C. Y. Weng, “A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
  27. F. A. Theopold and J. Bösenberg, “Differential absorption lidar measurement of atmospheric temperature profiles: theory and experiment,” J. Atmos. Ocean. Technol. 10, 165–179 (1993).
  28. J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
  29. R. Gill, K. Geller, J. Farina, J. Cooney, and A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 8, 225–226 (1979).
  30. Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
  31. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. M. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
  32. D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
  33. U. Wandinger, I. Mattis, A. Ansmann, Y. F. Arshinov, S. M. Bobrovnikov, and I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman lines at 532 nm,” in Proceedings of the 19th International Laser Radar Conference, G. Schwemmer, U. N. Singh, and S. Ismail, eds., NASA Conf. Publ. 1998–207671 (1998), Part 1, pp. 297–300.
  34. A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
  35. U. Görsdorf and V. Lehmann, “Enhanced accuracy of RASS-measured temperatures due to an improved range correction,” J. Atmos. Oceanic. Technol. 17, 406–416 (2000).
  36. G. Peters, “RASS, present state, prospects and open questions,” in Proceedings of the 5th International Symposium on Tropospheric Profiling: Needs and Technology, P. T. May, ed. (Australian Bureau of Meteorology Research Centre, Adelaide, Australia, 2000), pp. 231–233.
  37. W. F. Feltz, W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. Ben Howell, “Meteorological applications of temperature and water vapor retrievals from the ground-based Atmospheric Emitted Radiance Interferometer (AERI),” J. Appl. Meteorol. 37, 857–875 (1998).
  38. D. D. Turner, W. F. Feltz, and R. A. Ferrare, “Continuous water vapor profiles from operational ground-based active and passive remote sensors,” Bull. Am. Meteorol. Soc. 81, 1301–1317 (2000).
  39. Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, D. Althausen, I. Mattis, and U. Wandinger, “Spectrally absolute instrumental approach to isolate pure rotational Raman lidar returns from nitrogen molecules of the atmosphere,” in Advances in Laser Remote Sensing, A. Dabais, C. Loth, and J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 121–124.
  40. A. Behrendt, T. Nakamura, Y. Sawai, M. Onishi, and T. Tsuda, “Rotational vibrational-rotational Raman lidar: design and performance of the RASC Raman lidar at Shigaraki (38.8 °N, 136.1 °E), Japan,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE 4484, 151–162 (2002).
  41. S. M. Bobrovnikov, Y. F. Arshinov, I. B. Serikov, D. Althausen, A. Ansmann, I. Mattis, and U. Wandinger, “Daytime temperature profiling in the troposphere with a pure rotational Raman lidar,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, L. R. Bissonnette, G. Roy, and G. Vallee, eds. (Defense Research and Development Canada—Valcartier, Quebec, Canada, 2002), pp. 717–720.
  42. D. D. Turner and J. E. M. Goldsmith, “Twenty-four-hour Raman lidar measurements during the Atmospheric Radiation Measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Ocean. Technol. 16, 1062–1076 (1999).
  43. I. Mattis, U. Wandinger, D. Müller, A. Ansmann, and D. Althausen, “Routine dual-wavelength Raman lidar observations at Leipzig as part of an aerosol lidar network in Germany,” in Proceedings of the 19th International Laser Radar Conference, G. Schwemmer, U. N. Singh, and S. Ismail, eds., NASA Conf. Publ. 1998–207671 (1998), Part 1, pp. 29–32.
  44. I. Mattis, V. Jaenisch, D. Müller, K. Franke, and A. Ansmann, “Classification of particle extinction profiles derived within the framework of the German aerosol lidar network by the use of cluster analysis of backtrajectories,” in Advances in Laser Remote Sensing, A. Dabais, C. Loth, and J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 211–214.
  45. J. Bösenberg, M. Alpers, D. Althausen, A. Ansmann, C. Böckmann, R. Eixmann, A. Franke, V. Freudenthaler, H. Giehl, H. Jäger, S. Kreipl, H. Linné, V. Matthias, I. Mattis, D. Müller, J. Sarközi, L. Schneidenbach, J. Schneider, T. Trickl, E. Vorobieva, U. Wandinger, and M. Wiegner, “The German aerosol lidar network: methodology, data, analysis,” Rep. 317 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 2001).
  46. J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabais, C. Loth, and J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.
  47. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
  48. A. Ansmann, Y. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, and U. Wandinger, “Double-grating monochromator for a pure rotational Raman lidar,” in Fifth International Symposium on Atmospheric and Ocean Optics, V. E. Zuev and G. G. Matvienko, eds., Proc. SPIE 3583, 491–497 (1998).
  49. Y. F. Arshinov and S. M. Bobrovnikov, “Use of a Fabry-Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38, 4635–4638 (1999).
  50. J. Zeyn, W. Lahmann, and C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996).
  51. S. H. Melfi, J. D. Lawrence, and M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 12, 40–42 (1969).
  52. J. A. Cooney, “Remote measurement of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
  53. R. Strauch, V. Derr, and R. Cupp, “Atmospheric water vapor measurement by Raman lidar,” Remote Sens. Environ. 2, 101–108 (1972).
  54. J. C. Pourny, D. Renaut, and A. Orszag, “Raman-lidar humidity sounding of the observation of Raman scattering by water vapor in the atmosphere,” Appl. Opt. 18, 1141–1148 (1979).
  55. D. Renaut, J. C. Pourny, and R. Capitini, “Daytime Raman-lidar measurements of water vapor,” Opt. Lett. 5, 233–235 (1980).
  56. J. A. Cooney, K. Petri, and A. Salik, “Measurements of high resolution atmospheric water-vapor profiles by use of a solar blind Raman lidar,” Appl. Opt. 24, 104–108 (1985).
  57. D. Renaut and R. Capitini, “Boundary-layer water vapor probing with a solar-blind Raman lidar: validations, meteorological observations and prospect,” J. Atmos. Ocean. Technol. 5, 585–601 (1988).
  58. G. Vaughan, D. P. Wareing, L. Thomas, and V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
  59. S. H. Melfi, D. N. Whiteman, and R. A. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
  60. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar systems for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
  61. D. N. Whiteman, W. F. Murphy, N. W. Walsh, and K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993).
  62. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, and W. Michaelis, “Tropospheric water vapor measurement by Raman lidar: atmospheric extinction correction,” in Proceedings of the 15th International Laser Radar Conference, V. E. Zuev, ed. (Institute of Atmospheric Optics, Tomsk, Russia, 1990), pp. 256–259.
  63. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, and D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12, 1177–1195 (1995).
  64. B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854–1861 (1999).
  65. R. R. Rogers and M. K. Yau, A Short Course in Cloud Physics (Pergamon, New York, 1988).
  66. R. J. List, ed., Smithsonian Meteorological Tables (Smithsonian Institution, Washington, D.C., 1951).
  67. I. B. Serikov, Y. F. Arshinov, S. M. Bobrovnikov, D. Althausen, and I. Mattis, “Distortion of the temperature profile of the atmosphere acquired with a pure rotational Raman lidar due to sphericity of the Fabry-Perot interferometer plates,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, L. R. Bissonnette, G. Roy, and G. Vallee, eds. (Defense Research and Development Canada—Valcartier, Quebec, Canada, 2002), pp. 721–724.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited