OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 30 — Oct. 20, 2002
  • pp: 6489–6498

Effects of aerosol scattering phase function formulation on point-spread-function calculations

Patrick Chervet, Claire Lavigne, Antoine Roblin, and Piero Bruscaglioni  »View Author Affiliations


Applied Optics, Vol. 41, Issue 30, pp. 6489-6498 (2002)
http://dx.doi.org/10.1364/AO.41.006489


View Full Text Article

Enhanced HTML    Acrobat PDF (178 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The quality of the image produced by an outdoor optical system is affected by the presence of atmospheric aerosols between object and receiver. The properties of the point-spread function that result from aerosol particles were calculated by a new Monte Carlo code called MEDIA (an acronym for Modélisation des Effets de Diffusion Inhérents à l’Atmosphère). The influence of the scattering phase function’s angular dependence on the irradiance of the focal plane of a detector was studied. Calculations were performed by use of Mie theory and of the Henyey–Greenstein formulation for the same asymmetry parameter and various detector optical characteristics and atmospheric conditions. Major variations were observed for strong forward-peaked scattering phase functions and a large detector field of view.

© 2002 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(030.5620) Coherence and statistical optics : Radiative transfer
(110.4100) Imaging systems : Modulation transfer function
(290.1090) Scattering : Aerosol and cloud effects
(290.4210) Scattering : Multiple scattering

History
Original Manuscript: January 28, 2002
Revised Manuscript: July 3, 2002
Published: October 20, 2002

Citation
Patrick Chervet, Claire Lavigne, Antoine Roblin, and Piero Bruscaglioni, "Effects of aerosol scattering phase function formulation on point-spread-function calculations," Appl. Opt. 41, 6489-6498 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-30-6489


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  2. E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, Berlin, 1991).
  3. R. F. Lutomirski, “Atmospheric degradation of electrooptical system performance,” Appl. Opt. 17, 3915–3921 (1978). [CrossRef] [PubMed]
  4. J. W. Strohbehn, Laser Beam Propagation in the Atmosphere (Springer-Verlag, Berlin, 1978).
  5. M. S. Belen’kii, “Effect of the inner scale of turbulence on the atmospheric modulation transfer function,” J. Opt. Soc. Am. 13, 1078–1082 (1996). [CrossRef]
  6. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  7. J. Lenoble, Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures (Deepak, Hampton, Va., 1985).
  8. Y. Kuga, A. Ishimaru, “Modulation transfer function of layered inhomogeneous random media using the small-angle approximation,” Appl. Opt. 25, 4382–4385 (1986). [CrossRef] [PubMed]
  9. A. S. Zachor, “Aureole radiance field about a source in a scattering-absorbing medium,” Appl. Opt. 17, 1911–1922 (1978). [CrossRef] [PubMed]
  10. K. N. Liou, Y. Takano, S. C. Ou, A. Heymsfield, W. Kreiss, “Infrared transmission through cirrus clouds: a radiative model for target detection,” Appl. Opt. 29, 1886–1896 (1990). [CrossRef] [PubMed]
  11. K. N. Liou, Y. Takano, S. C. Ou, M. W. Johnson, “Laser transmission through thin cirrus clouds,” Appl. Opt. 39, 4886–4894 (2000). [CrossRef]
  12. G. I. Marchuk, G. A. Mikhailov, “The solution of problems of atmospheric optics by a Monte Carlo method,” Atmos. Oceanic Phys. 3, 147–155 (1967).
  13. R. R. Meier, J.-S. Lee, D. E. Anderson, “Atmospheric scattering of middle UV radiation from an internal source,” Appl. Opt. 17, 3216–3225 (1978). [CrossRef] [PubMed]
  14. G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt. 30, 2031–2041 (1991). [CrossRef] [PubMed]
  15. M. T. Valley, “Numerical method for modeling nonspherical aerosol modulation transfer functions,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. SPIE1688, 73–85 (1992).
  16. P. L. Walker, “Aerosol induced loss of image resolution,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. SPIE1688, 37–46 (1992).
  17. C. Lavigne, A. Roblin, V. Outters, S. Langlois, T. Girasole, C. Rozé, “Comparison of iterative and Monte Carlo methods for calculation of the aureole about a point source in the Earth’s atmosphere,” Appl. Opt. 38, 6237–6246 (1999). [CrossRef]
  18. P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “A numerical procedure for calculating the effect of a turbid medium on the MTF of an optical system,” J. Mod. Opt. 38, 129–142 (1991). [CrossRef]
  19. P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium,” Appl. Opt. 32, 2813–2824 (1993). [CrossRef] [PubMed]
  20. B. Ben Dor, P. Bruscaglioni, A. Devir, P. Donelli, A. Ismaelli, “Cloud, fog and aerosol effect on the MTF of optical systems,” in Atmospheric Propagation and Adaptive Systems, A. Kohnle, ed., Proc. SPIE2580, 106–114 (1995).
  21. B. Ben Dor, A. D. Devir, G. Shaviv, P. Bruscaglioni, P. Donelli, A. Ismaelli, “Atmospheric scattering effect on spatial resolution of imaging systems,” J. Opt. Soc. Am. A 14, 1329–1337 (1997). [CrossRef]
  22. D. Sadot, N. S. Kopeika, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol MTF,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. SPIE1688, 47–61 (1992).
  23. L. R. Bissonnette, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function: comment,” J. Opt. Soc. Am. A 11, 1175–1179 (1994). [CrossRef]
  24. L. R. Bissonnette, “Imaging through fog and rain,” Opt. Eng. 31, 1045–1052 (1992). [CrossRef]
  25. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214, environmental research paper 676 (Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1979).
  26. M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998). [CrossRef]
  27. K. N. Liou, Radiation and Cloud Processes in the Atmosphere (Oxford U. Press, Oxford, 1992).
  28. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995). [CrossRef] [PubMed]
  29. Y. Kuga, A. Ishimaru, “Modulation transfer function of layered inhomogeneous random media using the small-angle approximation,” Appl. Opt. 25, 4382–4385 (1986). [CrossRef] [PubMed]
  30. P. Donelli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Experimental validation of a Monte Carlo procedure for the evaluation of the effect of a turbid medium on the point spread function of an optical system,” J. Mod. Opt. 38, 2189–2201 (1991). [CrossRef]
  31. P. H. McMurry, “A review of atmospheric aerosol measurements,” Atmos. Environ. 34, 1959–1999 (2000). [CrossRef]
  32. T. L. Anderson, D. S. Covert, J. D. Wheeler, J. M. Harris, K. D. Perry, B. E. Trost, D. J. Jaffe, J. A. Ogren, “Aerosolbackscatter fraction and single scattering albedo: measured values and uncertainties at a coastal station in the Pacific Northwest,” J. Geophys. Res. 104, 26,793–26,807 (1999). [CrossRef]
  33. P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neususs, T. Novakov, “A comparison of aerosol chemical and optical properties from the first and second aerosol characterization experiments,” Tellus B 52, 239–257 (2000). [CrossRef]
  34. W. J. Wiscombe, G. W. Grams, “The backscattered fraction in two-stream approximation,” J. Atmos. Sci. 33, 2440–2451 (1976). [CrossRef]
  35. S. F. Marshall, D. S. Covert, R. J. Charlson, “Relationship between asymmetry parameter and hemispheric backscatter ratio: implication for climate forcing by aerosols,” Appl. Opt. 34, 6306–6311 (1995). [CrossRef] [PubMed]
  36. J. Key, “Streamer user’s guide,” Cooperative Institute for Research in Environmental Sciences Tech. Rep. (University of Colorado, Boulder, Colo., 1994).
  37. D. Toublanc, “Henyey–Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270–3274 (1996). [CrossRef] [PubMed]
  38. O. Boucher, “On aerosol direct shortwave forcing and the Henyey–Greenstein phase function,” J. Atmos. Sci. 55, 128–134 (1998). [CrossRef]
  39. T. S. Bates, P. K. Quinn, D. J. Coffman, J. E. Johnson, T. L. Miller, D. S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, C. Neususs, “Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: an overview,” J. Geophys. Res. 106, 20,767–20,782 (2001). [CrossRef]
  40. C. Levoni, M. Cervino, R. Guzzi, F. Torricella, “Atmospheric aerosol optical properties: a database of radiative characteristics for different components and classes,” Appl. Opt. 36, 8031–8041 (1997). [CrossRef]
  41. C. R. Zeisse, “NAM6: batch code for the Navy Aerosol Model,” Tech. Rep. 1804 (Space and Naval Warfare Systems Center, San Diego, Calif., 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited