OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 31 — Nov. 1, 2002
  • pp: 6567–6575

Athermalized Low-Loss Echelle-Grating-Based Multimode Dense Wavelength Division Demultiplexer

Jie Qiao, Feng Zhao, Ray T. Chen, James W. Horwitz, and William W. Morey  »View Author Affiliations

Applied Optics, Vol. 41, Issue 31, pp. 6567-6575 (2002)

View Full Text Article

Acrobat PDF (1348 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-density wavelength division demultiplexer (DEMUX) capable of demultiplexing eight-channel 200-GHz optically spaced signals into a 62.5-μm multimode-fiber array is reported. The wavelength range of operation is from 1549.32 to 1560.61 nm within the International Telecommunication Union grid. The measured wavelength accuracy is within 0.04 nm. The mean insertion loss of this DEMUX is 1.95 dB. Thermal analysis and temperature testing results are reported. The temperature test cycling from 20 °C to 60 °C indicates that the wavelength thermal drift is less than 0.8 pm/°C. Adjacent cross talk is measured to be better than −45 dB. The measured data transmission bit rate of this device is higher than 3.5 Gb/s.

© 2002 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2340) Fiber optics and optical communications : Fiber optics components
(090.1970) Holography : Diffractive optics
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(230.1950) Optical devices : Diffraction gratings
(260.2030) Physical optics : Dispersion

Jie Qiao, Feng Zhao, Ray T. Chen, James W. Horwitz, and William W. Morey, "Athermalized Low-Loss Echelle-Grating-Based Multimode Dense Wavelength Division Demultiplexer," Appl. Opt. 41, 6567-6575 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. DeCusatis, “Optical data communication: fundamentals and future directions,” Opt. Eng. 37, 3082–3099 (1998).
  2. R. R. Patel, H. E. Garrett, M. A. Emanuel, M. C. Larson, M. D. Pocha, D. M. Krol, R. J. Deri, and M. E. Lowry, “WDM filter modules in compact, low-cost plastic packages for byte-wide multimode fiber ribbon cable data links,” Electron. Lett. 35, 840–841 (1999).
  3. B. E. Lemoff, L. B. Aronson, and L. A. Buckman, “Zigzag waveguide demultiplexer for multimode WDM LAN,” Electron. Lett. 34, 1014–1016 (1998).
  4. L. B. Aronson, B. E. Lemoff, and L. A. Buckman, “Low-cost multimode WDM for local area networks up to 10Gb/s,” IEEE Photon. Technol. Lett. 10, 1489–1491 (1998).
  5. S.-Y. Hu, J. Ko, E. R. Hegblom, and L. A. Coldren, “Multimode WDM optical data links with monolithically integrated multiple-channel VCSEL and photodetector arrays,” IEEE J. Quantum Electron. 34, 1403–1414 (1998).
  6. M. Koga and T. Matsumoto, “A novel optical WDM demultiplexer consisting of a simple optical multimode guide and an electrical neural network,” IEEE Photon. Technol. Lett. 2, 487–489 (1990).
  7. W. J. Tomlinson, “Wavelength multiplexing in multimode optical fibers,” Appl. Opt. 16, 2180–2194 (1977).
  8. R. C. Lasky, U. L. Osterberg, and D. P. Stigliani, Optoelectronics for Data Communications (Academic, New York, 1995).
  9. J. Qiao, F. Zhao, R. T. Chen, W. W. Morey, J. W. Horwitz, R. Collins, G. Chang, and V. Villavicencio, “Multimode 200-GHz-spaced dense wavelength division demultiplexing for local area networks,” in WDM and Photonic Switching Devices for Network Applications II, R. T. Chen and G. F. Lipscomb, eds., Proc. SPIE 4289, 52–58 (2001).
  10. Y. Kanabar, N. Baker, G. J. Cannell, and A. Robertson, “High density wavelength division multiplexing for multiple access networks,” in IEE Colloquium on Optical Multiple Access Networks (Institution of Electrical Engineers, London, UK, 1991), pp. 9/1–9/4.
  11. M. C. Hutley, Diffraction Gratings (Academic, New York, 1982).
  12. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).
  13. “Schott Optical Glass,” Schott Glass Technologies, 400 York Ave., Duryea, Pa. 18642 (1992).
  14. E. G. Churin and P. Bayvel, “Passband flattening and broadening techniques for high spectral efficiency wavelength demultiplexers,” Electron. Lett. 35, 27–28 (1999).
  15. C. Dragone, T. Strasser, G. A. Bogert, L. W. Stulz, and P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
  16. A. Rigny, A. Bruno, and H. Sik, “Multigrating method for flattened spectral response wavelength multi/demultiplexer,” Electron. Lett. 33, 1701–1702 (1997).
  17. C. P. Botham, “Theory of tapering single-mode optical fibres by controlled core diffusion,” Electron. Lett. 24, 243–244 (1988).
  18. J. S. Harper, C. P. Botham, and S. Hornung, “Tapers in single-mode optical fibre by controlled core diffusion,” Electron. Lett. 24, 245–246 (1988).
  19. D. T. Moore, “Gradient-index optics: a review,” Appl. Opt. 19, 1035–1043 (1980).
  20. K. Shiraishi, A. Ogura, and K. Matsuura, “Spotsize contraction in standard single-mode fibers by use of a GI-fiber tip with a high focusing parameter,” IEEE Photon. Technol. Lett. 10, 1757–1759 (1998).
  21. W. Bludau and R. Rossberg, “Low-loss laser-to-fiber coupling with negligible optical feedback,” J. Lightwave Technol. LT-3, 294–302 (1985).
  22. K. Shiraishi, “A new lensed-fiber configuration employing cascaded GI-fiber chips,” J. Lightwave Technol. 18, 787–794 (2000).
  23. J. Laude and K. Lange, “Dense wavelength division multiplexer and routers using diffraction grating,” Proc. NFOEC 99 1, 83–88 (1999).
  24. J. Hirsh, V. Y. Kalindjian, F. S. Lin, M. R. Wang, G. Xu, and T. Jannson, “High-channel-density broadband wavelength division multiplexers based on periodic grating structures,” in Application and Theory of Periodic Structures, T. Jannson and N. C. Gallagher, eds., Proc. SPIE 2532, 171–181 (1995).
  25. B. Chassagne, K. Aubry, L. Fulop, and V. Dentan, “Low-loss athermal bulk-optic flat-top passband MUX/DMUX,” Electron. Lett. 38, 235–236 (2002).
  26. S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Delăge, P. Cheben, D.-X. Xu, M. Gao, A. Balakrishnan, J. Miller, and S. Charbonneau, “Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits,” in Optical Fiber Communication Conference and Exhibit Technical Digest (Optical Society of America, Washington, D.C., 2002), pp. 69–70.
  27. A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, and A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), pp. Tu01–1–Tu01–3.
  28. K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, and H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2000), pp. 130–132.
  29. N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579–580 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited