OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 31 — Nov. 1, 2002
  • pp: 6708–6724

Dopant-dependent reflectivity and refractive index of microcrystalline H x WO3 and Li x WO3 bronze thin films

Zahid Hussain  »View Author Affiliations


Applied Optics, Vol. 41, Issue 31, pp. 6708-6724 (2002)
http://dx.doi.org/10.1364/AO.41.006708


View Full Text Article

Enhanced HTML    Acrobat PDF (295 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Reflectivity spectra of H x WO3 and Li x WO3 thin films were measured over the photon energy range from 0.4 to 4.2 eV. It was found that microcrystalline tungsten bronzes have reflectances of 8%–30% over the dopant concentration range x (0 ≤ x ≤ 0.25). Values for the real part of refractive index n were also determined from the refined reflectivity data. The optical data are interpreted by use of a modified Drude-Zener model together with a single-oscillator model to differentiate between bound and free electronic states. The values of high-frequency dielectric constant εhf of M x WO3 (M = H+, Li+) bronzes were determined from the refractive-index data for estimation of the effective electronic masses involved in optical and polaronic transitions. A single-oscillator model showed that oscillator energy E a and dispersion energy E d increased and decreased, respectively, with increasing x values, opposite what occurs in crystalline tungsten bronzes. These findings support the fact that Bloch electrons are almost absent; instead, the polaronic species (W5+ and W4+) are assumed to control the reflectivity modifications (or variations in the refractive index) that are associated with the microcrystalline tungsten bronzes.

© 2002 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.2100) Materials : Electro-optical materials
(160.4760) Materials : Optical properties
(230.2090) Optical devices : Electro-optical devices
(240.0310) Optics at surfaces : Thin films
(310.6860) Thin films : Thin films, optical properties

History
Original Manuscript: March 29, 2002
Revised Manuscript: July 24, 2002
Published: November 1, 2002

Citation
Zahid Hussain, "Dopant-dependent reflectivity and refractive index of microcrystalline HxWO3 and LixWO3 bronze thin films," Appl. Opt. 41, 6708-6724 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-31-6708


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. W. Faughnan, R. S. Crandall, P. M. Heyman, “Electrochromism in WO3 amorphous films,” RCA Rev. 36, 177–200 (1975).
  2. Q. Zhong, S. A. Wessel, B. Heinrich, K. Colbow, “The electrochromic properties and mechanism of HxWO3 and LixWO3,” Sol. Energy Mater. 20, 289–296 (1990). [CrossRef]
  3. C. G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995).
  4. H. Morita, H. Washida, “Electrochromism of atmospheric evaporated tungsten oxide films,” Jpn. J. Appl. Phys. 23, 754–759 (1984). [CrossRef]
  5. C. M. Lampert, “Electrochromic materials and devices for energy efficient windows,” Sol. Energy Mater. 11, 1–27 (1984). [CrossRef]
  6. R. B. Goldner, T. E. Haas, G. Seward, K. K. Wong, P. Norton, G. Foley, G. Berera, G. Wei, S. Schulz, R. Chapman, “Thin film solid state ionic materials for electrochromic Smart Window™ glass,” Solid State Ionics 28–30, 1715–1721 (1988). [CrossRef]
  7. I. F. Chang, “Electrochromic and electrochemichromic materials and phenomena,” in Non-emissive Electrooptic Displays, A. R. Kmetz, F. K. Von Willisen, eds. (Plenum, New York, 1976).
  8. C. G. Granqvist, “Transparent conductive electrodes for electrochromic devices: a review,” Appl. Phys. A 57, 19–24 (1993). [CrossRef]
  9. J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic coatings for smart windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion, C. W. Lampert, ed., Proc. SPIE502, 30–37 (1984).
  10. C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B. A. Gregg, “Photoelectrochromic windows and displays,” Nature 383, 608–610 (1996). [CrossRef]
  11. J. N. Yao, K. Hashimoto, A. Fujishima, “Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light,” Nature 355, 624–626 (1992). [CrossRef]
  12. S. K. Deb, “Opportunities and challenges of electrochromic pohenomena in transition metal oxides,” Sol. Energy Mater. Sol. Cells 25, 327–338 (1992). [CrossRef]
  13. A. Bryant, M. Poirier, G. Riley, D. L. Lee, J. F. Vetelino, “Gas detection using surface acoustic wave delay lines,” Sens. Actuators 4, 105–111 (1983). [CrossRef]
  14. A. Georg, W. Graf, R. Neumann, V. Wittwer, “Stability of gasochromic WO3 films,” Sol. Energy Mater. Sol. Cells 63, 165–176 (2000). [CrossRef]
  15. L. J. LeGore, K. Snow, J. D. Galipeau, J. F. Vetelino, “The optimisation of a tungsten trioxide film for application in a surface acoustic wave gas sensor,” Sens. Actuators B 35–36, 164–169 (1996). [CrossRef]
  16. M. Di Giulio, D. Manno, G. Micocci, A. Serra, A. Tepore, “Gas-sensing properties of sputtered thin films of tungsten oxide,” J. Phys. D 30, 3211–3215 (1997). [CrossRef]
  17. S. K. Deb, “Optical and photoelectric properties and colour centres in thin films of tungsten oxide,” Philos. Mag. 27, 801–821 (1973). [CrossRef]
  18. C. G. Granqvist, “Electrochromic materials: metal oxide nanocomposites with variable optical properties,” Mater. Sci. Eng. A 168, 209–215 (1993). [CrossRef]
  19. A. Deneuville, P. Gerard, “Influence of substoichiometry, hydrogen content and crystallinity on the optical and electrical properties of HxWOy thin films,” J. Electron. Mater. 7, 559–587 (1978). [CrossRef]
  20. S. S. Sun, P. H. Holloway, “Modification of vapor-deposited WO3 electrochromic films by oxygen backfilling,” J. Vac. Sci. Technol. A 1, 529–533 (1983). [CrossRef]
  21. R. B. Goldner, G. Seward, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Completely solid lithiated smart windows,” Sol. Energy Mater. 19, 17–26 (1989). [CrossRef]
  22. L. Su, H. Wang, Z. Lu, “All-solid-state electrochromic window of Prussian Blue and electrodeposited WO3 film with poly(ethylene oxide) gel electrolyte,” Mater. Chem. Phys. 56, 266–270 (1998). [CrossRef]
  23. J. I. Pankove, ed., Display Devices (Springer-Verlag, Berlin, 1980), p. 191.
  24. T. Kamimori, J. Nagai, M. Mizuhashi, “Electrochromic devices for transmissive and reflective light control,” Sol. Energy Mater. 16, 27–38 (1987). [CrossRef]
  25. S. K. Deb, “Some perspectives on electrochromic device research,” in Materials and Optics for Solar Energy Conversion and Advanced Lighting Technology, C. W. Lampert, S. Holly, eds., Proc. SPIE692, 19–31 (1986).
  26. K. Bange, T. Gambke, “Electrochromic materials for optical switching devices,” Adv. Mater. 2, 10–16 (1990). [CrossRef]
  27. J. R. Stevens, J. S. E. M. Svensson, C. G. Granqvist, R. Spindler, “Electrochromism of WO3-based films in contact with a solid Li-doped siloxane elastomer electrolyte,” Appl. Opt. 26, 3489–3490 (1987). [CrossRef] [PubMed]
  28. T. Maruyama, S. Arai, “Electrochromic properties of tungsten trioxide thin films prepared by chemical vapor deposition,” J. Electrochem. Soc. 141, 1021–1024 (1994). [CrossRef]
  29. T. Maruyama, T. Kanagawa, “Electrochromic properties of tungsten trioxide thin films prepared by photochemical vapor deposition,” J. Electrochem. Soc. 141, 2435–2438 (1994). [CrossRef]
  30. A. Georg, W. Graf, D. Schweiger, V. Wittwer, P. Nitz, H. R. Wilson, “Switchable glazing with a large dynamic range in total solar energy transmittance,” Sol. Energy 62, 215–228 (1998). [CrossRef]
  31. A. Georg, W. Graf, R. Neumann, V. Wittwer, “Mechanism of the gasochromic coloration of porous WO3 films,” Solid State Ionics 127, 319–328 (2000). [CrossRef]
  32. N. Van Nha, N. Thi Bao Ngoc, N. Van Hung, “The preparation and gas sensitive property of Pt-WO3 thin film,” Thin Solid Films 334, 113–116 (1998). [CrossRef]
  33. D. K. Benson, C. E. Tracy, G. A. Hishmeh, P. E. Ciszek, S. H. Lee, D. P. Haberman, “Low-cost, fiber-optic hydrogen gas detector using guided-wave, surface-plasmon resonance in chemochromic thin films,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. de Groot, ed., Proc. SPIE3535, 185–191 (1998).
  34. I. D. Raistrick, “Lithium insertion reactions in tungsten and vanadium oxide bronzes,” Solid State Ionics 9/10, 425–430 (1983). [CrossRef]
  35. J. P. Pereira-Ramas, R. Baddour-Hadjean, N. Kumagai, K. Tanno, “Improvement of the electrochemical behaviour of WO3 as reversible cathodic material for lithium batteries,” Electrochim. Acta 38, 431–436 (1993). [CrossRef]
  36. Z. Hussain, “Optical and electrochromic properties of oxide bronze thin films,” Ph.D. dissertation (University of London, London, 2001).
  37. T. Nanba, I. Yasui, “X-ray diffraction study of microstructure of amorphous tungsten trioxide films prepared by electron beam vacuum evaporation,” J. Solid State Chem. 83, 304–315 (1989). [CrossRef]
  38. M. Rubin, “Ion-assisted sputtering of tungsten oxide solar-control films,” J. Vac. Sci. Technol. A 10, 1905–1907 (1992). [CrossRef]
  39. J. Gottsche, A. Hinsch, V. Wittwer, “Electrochromic mixed WO3–TiO2 thin films produced by sputtering and the sol-gel technique: a comparison,” Sol. Energy Mater. Sol. Cells 31, 415–428 (1993). [CrossRef]
  40. T. Nishide, F. Mizukami, “Refractive indices of the tungsten oxide films prepared by sol-gel and sputtering processes,” Opt. Eng. 34, 3329–3333 (1995). [CrossRef]
  41. I. Bedja, S. Hotchandani, P. V. Kamat, “Photoelectrochemistry of quantized WO3 colloids electron storage, electrochromic, and photoelectrochromic effects,” J. Phys. Chem. 97, 11064–11070 (1993). [CrossRef]
  42. P. Delichere, P. Falaras, M. Froment, A. Hugot-Le Goff, “Electrochromism in anodic WO3 films. 1. Preparation and physicochemical properties of films in the virgin and colored states,” Thin Solid Films 161, 35–46 (1988). [CrossRef]
  43. L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999). [CrossRef]
  44. P. Gerard, A. Deneuville, “Color in tungsten trioxide thin films,” J. Appl. Phys. 48, 4252–4255 (1977). [CrossRef]
  45. A. Georg, W. Graf, V. Wittwer, “Comparison of electrical conductivity and optical properties of substoichiometrically and electrochemically colored WOx films of different crystallinity,” Sol. Energy Mater. Sol. Cells 51, 353–370 (1998). [CrossRef]
  46. A. Agrawal, H. Habibi, “Effect of heat treatment on the structure, composition and electrochromic properties of evaporated tungsten oxide films,” Thin Solid Films 169, 257–270 (1989). [CrossRef]
  47. K. Matsuhiro, Y. Masuda, “Transmissive electrochromic display using a porous crystalline WO3 counter electrode,” Proc. Soc. Inf. Disp. 21/22, 101–105 (1980).
  48. S. M. A. Durrani, E. E. Khawaja, M. A. Salim, M. F. Al-Kuhaili, A. M. Al-Shukri, “Effect of preparation conditions on the optical and thermochromic properties of thin films of tungsten oxide,” Sol. Energy Mater. Sol. Cells 71, 313–325 (2002). [CrossRef]
  49. H. Morita, “Coloration and decoloration in atmospheric-evaporated tungsten-oxide films (AETOF) utilizing lithium ions,” Jpn. J. Appl. Phys. 24, 750–754 (1985). [CrossRef]
  50. N. Yoshiike, S. Kondo, “Electrochemical properties of WO3. x(H2O). 1. The influences of water adsorption and hydroxylation,” J. Electrochem. Soc. 130, 2283–2287 (1983). [CrossRef]
  51. M. Green, Z. Hussain, “Optical properties of lithium tungsten bronze thin films,” J. Appl. Phys. 74, 3451–3458 (1993). [CrossRef]
  52. M. Green, Z. Hussain, “Optical properties of dilute hydrogen tungsten bronze thin films,” J. Appl. Phys. 69, 7788–7796 (1991). [CrossRef]
  53. A. Travlos, “Physical properties of thin films of sodium tungsten bronzes,” Ph.D. dissertation (University of London, London, 1984).
  54. K. S. Kang, “Electrochromic display: sodium insertion in tungsten trioxide films,” Ph.D. dissertation (University of London, London, 1979).
  55. M. Shiojiri, T. Miyano, C. Kaito, “Electron microscopic studies of structure and crystallization of amorphous metal oxide films,” Jpn. J. Appl. Phys. 18, 1937–1945 (1979). [CrossRef]
  56. A. Azens, M. Kitenbergs, U. Kanders, “Evaporation of tungsten oxide: a mass-spectrometric study of the vapor contents,” Vacuum 46, 745–747 (1995). [CrossRef]
  57. C. Bechinger, M. S. Burdis, J. G. Zhang, “Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films,” Solid State Commun. 101, 753–756 (1997). [CrossRef]
  58. S. Hashimoto, H. Matsuoka, H. Kagechika, M. Susa, K. S. Goto, “Degradation of electrochromic amorphous WO3 film in lithium-salt electrolyte,” J. Electrochem. Soc. 137, 1300–1304 (1990). [CrossRef]
  59. C. Ottermann, A. Temmink, K. Bange, “Correlation of injected charge to optical constants (n, k) of electrochromic films,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion IX, C. G. Granqvist, C. M. Lampert, eds., Proc. SPIE1272, 111–121 (1990).
  60. K. Miyake, H. Kaneko, M. Sano, N. Suedomi, “Physical and electrochromic properties of the amorphous and crystalline tungsten oxide thick films prepared under reducing atmosphere,” J. Appl. Phys. 55, 2747–2753 (1984). [CrossRef]
  61. T. Yoshimura, “Oscillator strength of small-polaron absorption in WOx electrochromic thin films,” J. Appl. Phys. 57, 911–919 (1985). [CrossRef]
  62. M. Green, K. Kang, “Sodium tungsten bronze thin films: variation of chemical potential with sodium concentration,” Solid State Ionics 8, 281–289 (1983). [CrossRef]
  63. H. E. Bennett, J. M. Bennett, “Precision measurements in thin film optics,” in Physics of Thin Films, G. Hass, R. E. Fhun, eds. (Academic, New York, 1967), Vol. 4, p. 42.
  64. T. M. Donovan, W. E. Spicer, J. M. Bennett, E. J. Ashley, “Optical properties of amorphous germanium films,” Phys. Rev. B 2, 397–413 (1970). [CrossRef]
  65. R. B. Goldner, A. Brofos, G. Foley, E. L. Goldner, T. E. Haas, W. Henderson, P. Norton, B. A. Ratnam, N. Weis, K. K. Wong, “Optical frequencies free electron scattering studies on electrochromic materials for variable reflectivity windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion IV, C. W. Lampert, ed., Proc. SPIE502, 54–57 (1984).
  66. S. F. Cogan, T. D. Plante, M. A. Parker, R. D. Rauh, “Free-electron electrochromic modulation in crystalline LixWO3,” J. Appl. Phys. 60, 2735–2738 (1986). [CrossRef]
  67. R. B. Goldner, P. Norton, K. Wong, G. Foley, E. L. Goldner, G. Seward, R. Chapman, “Further evidence for free electrons as dominating the behavior of electrochromic polycrystalline WO3 films,” Appl. Phys. Lett. 47, 536–537 (1985). [CrossRef]
  68. G. Hagg, A. Magneli, “Recent structure investigations of oxygen compounds of molybdenum and tungsten,” Rev. Pure Appl. Chem. 4, 235–249 (1954).
  69. E. Salje, K. Viswanathan, “Physical properties and phase transitions in WO3,” Acta Crystallogr. Sect. A 31, 356–359 (1975). [CrossRef]
  70. R. B. Goldner, D. H. Mendelsohn, J. Alexander, W. R. Henderson, D. Fitzpatrick, T. E. Haas, H. H. Sample, R. D. Rauh, M. A. Parker, T. L. Rose, “High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films,” Appl. Phys. Lett. 43, 1093–1095 (1983). [CrossRef]
  71. O. F. Schirmer, V. Wittwer, G. Baur, G. Brandt, “Dependence of WO3 electrochromic absorption on crystallinity,” J. Electrochem. Soc. 124, 749–753 (1977). [CrossRef]
  72. S. F. Cogan, R. D. Rauh, J. D. Weswood, D. I. Plotkin, R. B. Jones, “Infrared properties of electrochromic materials,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VIII, C. M. Lampert, ed., SPIE 1149, 2–7 (1989).
  73. J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic coatings for smart windows: crystalline and amorphous WO3 films,” Thin Solid Films 126, 31–36 (1985). [CrossRef]
  74. P. A. Lightsey, D. A. Lilienfeld, D. F. Holcomb, “Transport properties of cubic NaxWO3 near the insulator-metal transition,” Phys. Rev. B 14, 4730–4732 (1976). [CrossRef]
  75. L. Kopp, B. N. Harmon, S. H. Liu, “Band structure of cubic NaxWO3,” Solid State Commun. 22, 677–679 (1977). [CrossRef]
  76. L. F. Mattheiss, “Band structure and Fermi surface of ReO3,” Phys. Rev. 181, 987–1000 (1969). [CrossRef]
  77. P. G. Dickens, S. C. Baker, M. T. Weller, “Hydrogen insertion in oxides,” Solid State Ionics 18/19, 89–97 (1986). [CrossRef]
  78. J. B. Goodenough, “Transition-metal oxides with metallic conductivity,” Bull. Soc. Chim. Fr. 4, 1200–1207 (1975).
  79. P. A. Lightsey, “Percolation view of transport properties in NaxWO3,” Phys. Rev. B 8, 3586–3589 (1973). [CrossRef]
  80. J. F. Owen, K. J. Teegarden, H. R. Shanks, “Optical properties of the sodium-tungsten bronzes and tungsten trioxide,” Phys. Rev. B 18, 3827–3837 (1978). [CrossRef]
  81. J. P. Doumerc, M. Pouchard, P. Hagenmuller, “Chemical bond, crystal structure and the metal–nonmetal transition in oxide bronzes,” in The Metallic and Non-metallic States of Matter, P. P. Edwards, C. N. R. Rao, eds. (Taylor & Francis, London, 1985), Chap. 11, p. 287.
  82. D. W. Bullett, “Bulk and surface electron states in WO3 and tungsten bronzes,” J. Phys. C 16, 2197–2207 (1983). [CrossRef]
  83. J. A. Duffy, Energy Levels in Inorganic Solids (Wiley, New York, 1990), p. 182.
  84. V. Wittwer, O. F. Schirmer, P. Schlotter, “Disorder dependence and optical detection of the Anderson transition in amorphous HxWO3 bronzes,” Solid State Commun. 25, 977–980 (1978). [CrossRef]
  85. C. Bechinger, M. S. Burdis, J. G. Zhang, “Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films,” Solid State Commun. 101, 753–756 (1997). [CrossRef]
  86. L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999). [CrossRef]
  87. P. Gerard, A. Deneuville, R. Courths, “Characterization of amorphpous WO3 thin films before and after coloration,” Thin Solid Films 71, 221–236 (1980). [CrossRef]
  88. J. G. Zhang, D. K. Benson, C. E. Tracy, S. K. Deb, A. W. Czanderna, C. Bechinger, “Chromic mechanism in amorphous WO3 films,” J. Electrochem. Soc. 144, 2022–2025 (1997). [CrossRef]
  89. S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, D. K. Benson, S. K. Deb, “Raman spectroscopic studies of electrochromic a-WO3,” Electrochim. Acta 44, 3111–3115 (1999). [CrossRef]
  90. T. Yoshimura, M. Watanabe, Y. Koike, K. Kiyota, M. Tanaka, “Enhancement in oscillator strength of color centers in electrochromic thin films deposited from WO2 powder,” J. Appl. Phys. 53, 7314–7320 (1982). [CrossRef]
  91. P. D. Cikmach, “Electrochromism and charge carrier localization in WO3,” Ph.D dissertation (Latrian State University, Riga, Latvia, 1985; in Russian).
  92. A. I. Gavrilyuk, G. M. Gusinskii, T. G. Lanskaya, “Determination of the oscillator strength of an optical transition for color centers in WO3 thin films,” Tech. Phys. Lett. 20, 295–297 (1994).
  93. M. R. Goulding, C. B. Thomas, R. J. Hurditch, “A comparison of thermo and photochromic behavior in films of amorphous WO3,” Solid State Commun. 46, 451–453 (1983). [CrossRef]
  94. P. R. Collins, W. J. Fredericks, “Absorption spectra and oscillator strength of KBr:Pb,” J. Phys. Chem. Solids 47, 529–532 (1986). [CrossRef]
  95. F. Abeles, “Optical properties of metals,” in Optical Properties of Solids, F. Abeles, ed. (North-Holland, Amsterdam, 1972), Chap. 3, p. 93.
  96. M. R. Tubbs, “Dispersion effects in interference methods for the measurement of refractive index,” J. Phys. Chem. Solids 30, 2323–2325 (1969). [CrossRef]
  97. F. Abelès, “Methods for determining optical parameters of thin films,” in Progress in Optics, E. Wolf, ed. (Wiley, New York, 1963), Vol. II, p. 268.
  98. J. I. Pankov, Optical Processes in Semiconductors (Dover, New York, 1971), p. 93.
  99. M. R. Tubbs, “MoO3 layers-optical properties, color centres, and holographic recording,” Phys. Status Solidi A 21, 253–260 (1974). [CrossRef]
  100. D. Green, “Optical constants of sputtered WO3,” Appl. Opt. 29, 4547–4549 (1990). [CrossRef] [PubMed]
  101. S. Sawada, G. C. Danielson, “Domain structure of WO3 single crystals,” Phys. Rev. 113, 1005–1013 (1959). [CrossRef]
  102. T. Toyoda, “The optical dispersion parameters in WO3 thin films,” J. Appl. Phys. 63, 5166–5168 (1988). [CrossRef]
  103. Z. Hussain, “Vacuum temperature-dependent ellipsometic studies on WO3 thin films,” Appl. Opt. 38, 7112–7127 (1999). [CrossRef]
  104. E. K. Sichel, J. I. Gittleman, J. Zelez, “Electrochromism in the composite material Au-WO3,” Appl. Phys. Lett. 31, 109–111 (1977). [CrossRef]
  105. E. Salje, B. Guttler, “Anderson transition and intermediate polaron formation in WO3-x transport properties and optical absorption,” Philos. Mag. B 50, 607–620 (1984). [CrossRef]
  106. N. F. Mott, E. A. Davis, Electronic Process in Noncrystalline Materials (Clarendon, Oxford, 1979), p. 15.
  107. G. Hollinger, P. Pertosa, “Direct observation of the Anderson transition in HxWO3 bronzes by high resolution x-ray photoelectron spectroscopy,” Chem. Phys. Lett. 74, 341–344 (1980). [CrossRef]
  108. P. G. Dickens, R. M. P. Quillian, M. S. Whittingham, “The reflectance spectra of the tungsten bronzes,” Mater. Res. Bull. 3, 941–950 (1968). [CrossRef]
  109. A. Borghesi, M. Geddo, G. Guizzetti, E. Reguzzoni, A. Stella, F. Levy, “Plasmon and interband transitions in Ti1-xHfxSe2 systems,” Phys. Rev. B 29, 3167–3171 (1984). [CrossRef]
  110. K. Seeger, Semiconductor Physics (Springer-Verlag, Berlin, 1985), p. 302.
  111. R. B. Goldner, K. Wong, G. Foley, P. Norton, L. Wamboldt, G. Seward, T. Haas, R. Chapman, “Thin films of WO3 for practical electrochromic windows,” Sol. Energy Mater. 16, 365–370 (1987). [CrossRef]
  112. F. O. Arntz, R. B. Goldner, B. Morel, T. E. Hass, K. K. Wong, “Near-infrared reflectance modulation with electrochromic crystalline WO3 films deposited on ambient temperature glass substrates by an oxygen ion-assisted technique,” J. Appl. Phys. 67, 3177–3179 (1990). [CrossRef]
  113. S. K. Deb, “Electron spin resonance of defects in single crystal and thin films of tungsten trioxide,” Phys. Rev. B 16, 1020–1024 (1977). [CrossRef]
  114. J. D. Greiner, H. R. Shanks, D. C. Wallace, “Magnetic susceptibility of the cubic sodium tungsten bronzes,” J. Chem. Phys. 36, 772–776 (1962). [CrossRef]
  115. B. L. Crowder, M. J. Sienko, “Some solid-state studies of tungsten trioxide and their significance to tungsten bronze theory,” J. Chem. Phys. 38, 1576–1583 (1963). [CrossRef]
  116. J. Feinleib, W. J. Scouler, A. Ferretti, “Optical properties of the metal ReO3 from 0.1 to 22 eV,” Phys. Rev. 165, 765–774 (1968). [CrossRef]
  117. S. F. Cogan, T. D. Plante, M. A. Parker, R. D. Rauh, “Electrochromic solar attenuation in crystalline and amorphous LixWO3,” Sol. Energy Mater. 14, 185–193 (1986). [CrossRef]
  118. D. H. Mendelsohn, R. B. Goldner, “Ellipsometry measurements as direct evidence of the Drude model for polycrystalline electrochromic WO3 films,” J. Electrochem. Soc. 131, 857–860 (1984). [CrossRef]
  119. Y. Shigesato, “Photochromic properties of amorphous WO3 films,” Jpn. J. Appl. Phys. 30, 1457–1462 (1991). [CrossRef]
  120. M. DiDomenico, “Material dispersion in optical fiber waveguides,” J. Appl. Opt. 11, 652–654 (1972). [CrossRef]
  121. H. G. Unger, Planar Optical Waveguides and Fibers (Oxford U. Press, London, 1977).
  122. S. H. Wemple, M. DiDomenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338–1350 (1971). [CrossRef]
  123. D. Davazoglou, A. Donnadieu, “Study of optical dispersion parameters of WO3 polycrystalline thin films,” J. App. Phys. 72, 1502–1511 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited