OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 32 — Nov. 11, 2002
  • pp: 6796–6801

Fixed three-dimensional holographic images

Clint Wood, Gregory J. Salamo, John Goff, Gary L. Wood, Richard J. Anderson, and David J. McGee  »View Author Affiliations


Applied Optics, Vol. 41, Issue 32, pp. 6796-6801 (2002)
http://dx.doi.org/10.1364/AO.41.006796


View Full Text Article

Enhanced HTML    Acrobat PDF (181 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three-dimensional holograms were recorded in a cerium-doped, strontium barium niobate (SBN:75) photorefractive crystal. These holograms are shown to not degrade after more than one week of continuous readout and to reconstruct reproductions of the original object with an observable field of view of approximately 35°.

© 2002 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(100.0100) Image processing : Image processing
(190.0190) Nonlinear optics : Nonlinear optics

History
Original Manuscript: October 17, 2001
Revised Manuscript: July 22, 2002
Published: November 10, 2002

Citation
Clint Wood, Gregory J. Salamo, John Goff, Gary L. Wood, Richard J. Anderson, and David J. McGee, "Fixed three-dimensional holographic images," Appl. Opt. 41, 6796-6801 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-32-6796


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 399–427.
  2. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  3. G. C. Valley, M. B. Kline, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983). [CrossRef]
  4. F. P. Strohkendl, J. M. C. Jonathan, R. W. Hellwarth, “Hole-electron competition in photorefractive gratings,” Opt. Lett. 11, 312–314 (1986). [CrossRef]
  5. A. Yariv, S. Orlov, G. Rakuljic, V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 132–134 (1995). [CrossRef]
  6. D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995). [CrossRef]
  7. N. A. Vainos, M. C. Gower, “High-fidelity image amplification and phase conjugation in photorefractive Bi12SiO20 crystals,” Opt. Lett. 16, 363–365 (1991). [CrossRef] [PubMed]
  8. M. C. Bashaw, A. Aharoni, L. Hesselink, “Alleviation of image distortion due to striations in a photorefractive medium by using a phase-conjugated reference wave,” Opt. Lett. 17, 1149–1151 (1992). [CrossRef] [PubMed]
  9. A. Aharoni, M. C. Bashaw, L. Hesselink, “Distortion-free multiplexed holography in striated photorefractive media,” Appl. Opt. 32, 1973–1982 (1993). [CrossRef] [PubMed]
  10. D. L. Naylor, P. W. Tam, R. W. Hellwarth, “Fidelity of optical phase conjugation by photorefractive degenerate four-wave mixing in barium titanate,” J. Appl. Phys. 72, 5840–5847 (1992). [CrossRef]
  11. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995). [CrossRef] [PubMed]
  12. N. A. Vainos, M. C. Gower, “High-fidelity phase conjugation and real-time orthoscopic three-dimensional image projection in BaTiO3,” J. Opt. Soc. Am. B 8, 2355–2362 (1991). [CrossRef]
  13. F. Zhao, K. Sayano, “Compact read-only memory with lens–less phase-conjugate holograms,” Opt. Lett. 21, 1295–1297 (1996). [CrossRef] [PubMed]
  14. L. E. Adams, R. S. Bondurant, “Wide-field-of-view heterodyne receiver using a photorefractive double phase-conjugate mirror,” Opt. Lett. 16, 832–834 (1991). [CrossRef] [PubMed]
  15. B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997). [CrossRef]
  16. J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971). [CrossRef]
  17. L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989). [CrossRef]
  18. G. Montemezzani, P. Gunter, “Thermal hologram fixing in pure and doped KnbO3 crystals,” J. Opt. Soc. Am. B 7, 2323–2328 (1990). [CrossRef]
  19. D. Kirillov, J. Feinberg, “Fixable complementary gratings in photorefractive BaTiO3,” Opt. Lett. 16, 1520–1522 (1991). [CrossRef] [PubMed]
  20. F. Micheron, J. Trotier, “Photoinduced phase transitions in (Sr,Ba)Nb2O6,” Ferroelectrics 8, 441–442 (1974). [CrossRef]
  21. V. Leyva, A. Agranat, A. Yariv, “Fixing of a photorefractive grating in KTa1xNbxO3 by cooling through the ferroelectric phase transition,” Opt. Lett. 16, 554–556 (1991). [CrossRef] [PubMed]
  22. M. Horowitz, A. Bekker, B. Fischer, “Image and hologram fixing method with SrxBa1–xNb2O6 crystals,” Opt. Lett. 18, 1964–1966 (1993). [CrossRef] [PubMed]
  23. F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972). [CrossRef]
  24. Y. Qiao, S. Orlov, D. Psaltis, R. R. Neurgaonkar, “Electrical fixing of photorefractive holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18, 1004–1006 (1993). [CrossRef] [PubMed]
  25. R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, M. H. Garrett, D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993). [CrossRef]
  26. R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, “Enhancement of the amplitude and lifetime of photoinduced space charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994). [CrossRef] [PubMed]
  27. R. S. Cudney, P. Bernasconi, M. Zgonik, J. Fousek, P. Gunter, “Photorefractive grating fixing in KNbO3 by ferroelectric domains,” Appl. Phys. Lett. 70, 1339–1341 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited