OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 32 — Nov. 11, 2002
  • pp: 6815–6828

Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation

François Hild, Bumedijen Raka, Maud Baudequin, Stéphane Roux, and Florence Cantelaube  »View Author Affiliations


Applied Optics, Vol. 41, Issue 32, pp. 6815-6828 (2002)
http://dx.doi.org/10.1364/AO.41.006815


View Full Text Article

Enhanced HTML    Acrobat PDF (2416 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a multiscale approach to determine the displacement field by digital image correlation. The displacement field is first estimated on a coarse resolution image and progressively finer details are introduced in the analysis as the displacement is more and more securely and accurately determined. Such a scheme has been developed to increase the robustness, accuracy, and reliability of the image-matching algorithm. The procedure is used on two different types of examples. The first one deals with a representative image that is deformed precisely and purposefully to assess the intrinsic performances. In particular, the maximum measurable strain is determined. The second case deals with a series of pictures taken during compression experiments on mineral-wool samples. The different steps of the procedure are analyzed and their respective role is assessed. Both reflection and transmission images are tested.

© 2002 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(070.2590) Fourier optics and signal processing : ABCD transforms
(100.2000) Image processing : Digital image processing
(100.5010) Image processing : Pattern recognition
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging

History
Original Manuscript: January 3, 2002
Revised Manuscript: May 28, 2002
Published: November 10, 2002

Citation
François Hild, Bumedijen Raka, Maud Baudequin, Stéphane Roux, and Florence Cantelaube, "Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation," Appl. Opt. 41, 6815-6828 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-32-6815


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Hesselink, “Digital image processing in flow visualization,” Annu. Rev. Fluid Mech. 20, 421–485 (1988). [CrossRef]
  2. R. J. Adrian, “Particle imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991). [CrossRef]
  3. C. E. Willert, M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10, 181–193 (1991). [CrossRef]
  4. N. A. Fomin, Speckle Photography for Fluid Mechanical Measurements (Springer, Berlin, 1998).
  5. M. Raffel, C. E. Willert, J. Kompenhans, Particle Image Velocimetry, a practical guide, (Springer, Berlin, 1998).
  6. M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Image Vision Comput. 1, 133–139 (1983). [CrossRef]
  7. M. A. Sutton, S. R. McNeill, J. D. Helm, Y. J. Chao, “Advances in Two-Dimensional and Three-Dimensional Computer Vision,” in Photomechanics, P. K. Rastogi, ed. (Springer, Berlin, 2000), pp. 323–372.
  8. P. T. Tokumaru, P. E. Dimotakis, “Image correlation velocimetry,” Exp. Fluids 19, 1–15 (1995). [CrossRef]
  9. S. Roux, F. Hild, Y. Berthaud, “Correlation image velocimetry: A spectral approach,” Appl. Opt. 41, 108–115 (2002). [CrossRef] [PubMed]
  10. T. C. Chu, W. F. Ranson, M. A. Sutton, W. H. Petters, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 3, 232–244 (1985). [CrossRef]
  11. D. J. Chen, F. P. Chiang, Y. S. Tan, H. S. Don, “Digital speckle-displacement measurement using a complex spectrum method,” Appl. Opt. 32, 1839–1849 (1993). [CrossRef] [PubMed]
  12. Y. Berthaud, J. Scholz, J. Thesing, “Méthodes optiques et acoustiques de mesures des caractéristiques mécaniques,” in Proc. Colloque national MECAMAT, Cachan, Mécanismes et mécanique des grandes déformations, (1996), pp. 77–80.
  13. F. P. Chiang, Q. Wang, F. Lehman, “New developments in full-field strain measurements using speckles,” in Non-Traditional Methods of Sensing Stress, Strain and Damage in Materials and Structures (ASTM, Philadelphia, 1997), STP 1318, pp. 156–169.
  14. D. Choi, J. L. Thorpe, R. Hanna, “Image analysis to measure strain in wood and paper,” Wood Sci. 25, 251–262 (1991).
  15. C. G’Sell, J.-M. Hiver, A. Dahnoun, A. Souahi, “Video-controlled tensile testing of polymers and metals beyond the necking point,” J. Mater. Sci. 27, 5031–5039 (1992). [CrossRef]
  16. L. Chevalier, S. Calloch, F. Hild, Y. Marco, “Digital image correlation used to analyze the multiaxial behavior of rubber-like materials,” Eur. J. Mech. A. Solids 20, 169–187 (2001). [CrossRef]
  17. G. C. Holst, CCD Arrays, Cameras, and Displays (SPIE, Bellingham, Wash., 1998).
  18. B. K. P. Horn, B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981). [CrossRef]
  19. A. Mitiche, P. Bouthemy, “Computation and analysis of image motion: A synopsis of current problems and methods,” Int. J. Comput. Vision 19, 29–55 (1996). [CrossRef]
  20. P. J. Hubert, Robust Statistics (Wiley, New York, 1981).
  21. M. Black, “Robust Incremental Optical Flow,” Ph.D. dissertation (Yale University, New Haven, Conn., 1992).
  22. J.-M. Odobez, P. Bouthemy, “Robust multiresolution estimation of parametric motion models,” J. Visual Commun. Image Represent. 6, 348–365 (1995). [CrossRef]
  23. D. Bogen, D. Rahdert, “A strain energy approach to regularization in displacement field fits of elastically deforming bodies,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 629–635 (1996). [CrossRef]
  24. B. Wagne, S. Roux, F. Hild, “Spectral approach to displacement evaluation from image analysis,” Eur. Phys. J. 17, 247–252 (2002).
  25. L. C. Gui, W. Merzkirch, “A comparative study of the MQD method and several correlation-based PIV evaluation algorithms,” Exp. Fluids 28, 36–44 (2000). [CrossRef]
  26. R. Hill, “Aspects of invariance in solid mechanics,” Adv. Appl. Mech. 18, 1–75 (1978).
  27. R. D. Keane, R. J. Adrian, “Optimization of particle image velocimeters. Part I: Double pulsed systems,” Meas. Sci. Technol. 1, 1202–1215 (1990). [CrossRef]
  28. Matlab, Matlab 5.3, the Language of Technical Computing, version 5.3 (the MathWorks inc., http://www.mathworks.com , 1999).
  29. J.-N. Périé, S. Calloch, C. Cluzel, F. Hild, “Analysis of a multiaxial test on a C/C composite by using digital image correlation and a damage model,” Exp. Mech. (in press) (2002).
  30. J. Bolinder, On the accuracy of digital particle image velocimetry system, Technical Report, Lund Institute of Technology, ISSN 0282–1990 (1999).
  31. D. P. Hart, “Super-resolution PIV by recursive local correlation,” J. Visual Commun. Image Represent. 10, 1–10 (1990).
  32. When a number Ξ is written as Ξ ± ξ, ξ corresponds to the standard error.
  33. Y. Marco, L. Chevalier, M. Chaouche, “X-Ray stuy of induced cristallisation and orientation in PET under biaxial loading: Application to blow-moulding process,” in Proc. 5th International ESAFORM Conference on Material Forming, M. Pietryk, Z. Mitura, J. Kaczmar, eds., (Akapit, Krakow (Poland), 2002), pp. 227–230.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited