OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 32 — Nov. 11, 2002
  • pp: 6867–6874

Optical implementation of the weighted sliced orthogonal nonlinear generalized correlation for nonuniform illumination conditions

Pascuala García-Martínez, Manuel Tejera, Carlos Ferreira, Daniel Lefebvre, and Henri H. Arsenault  »View Author Affiliations


Applied Optics, Vol. 41, Issue 32, pp. 6867-6874 (2002)
http://dx.doi.org/10.1364/AO.41.006867


View Full Text Article

Enhanced HTML    Acrobat PDF (1291 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical pattern recognition under variations of illumination is an important issue. The sliced orthogonal nonlinear generalized (SONG) correlation has been proposed as an optical pattern recognition tool to discriminate with high efficiency between objects. But, at the same time, the SONG correlation is very sensitive to gray-scale image variations. In a previous work, we expanded the definition of the SONG correlation to the Weighted SONG (WSONG) correlation to modify the discrimination capability in a controlled way. Here, we propose to use the WSONG when pattern recognition is obtained by means of optical correlation under nonuniform illumination. The calculation of the WSONG correlation requires the summation of many linear correlations between binary images. To implement it optically, we use a time sequential joint transform correlator.

© 2002 Optical Society of America

OCIS Codes
(070.4550) Fourier optics and signal processing : Correlators
(070.5010) Fourier optics and signal processing : Pattern recognition
(100.4550) Image processing : Correlators
(100.5010) Image processing : Pattern recognition

History
Original Manuscript: May 8, 2002
Revised Manuscript: August 5, 2002
Published: November 10, 2002

Citation
Pascuala García-Martínez, Manuel Tejera, Carlos Ferreira, Daniel Lefebvre, and Henri H. Arsenault, "Optical implementation of the weighted sliced orthogonal nonlinear generalized correlation for nonuniform illumination conditions," Appl. Opt. 41, 6867-6874 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-32-6867


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  2. B. G. Boone, Signal Processing using Optics: Fundamentals, Devices, Architectures, and Applications (Oxford University, New York, 1998).
  3. A. Vander Lugt, “Signal Detection by Complex Spatial Filtering,” IEEE Trans. Inf. Theory, IT-10, 139–145 (1964). [CrossRef]
  4. C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966). [CrossRef] [PubMed]
  5. P. Purswosumarto, F. T. S. Yu, “Robustness of joint transform correlator versus Vander Lugt correlator,” Opt. Eng. 36, 2775–2780 (1997). [CrossRef]
  6. Selected Papers on Optical Pattern Recognition Using Joint Transform Correlation, M. S. Alam, ed. SPIE Milestone Series, MS157 (1999).
  7. B. Javidi, J. Wang, Q. Tang, “Nonlinear joint transform correlators,” Pattern Recogn. 27, 523–542 (1999). [CrossRef]
  8. A. Tanone, C.-M. Uang, F. T. S. Yu, E. C. Tam, D. A. Gregory, “Effects of thresholding in joint-transform correlation,” Appl. Opt. 31, 4816–4822 (1992). [CrossRef] [PubMed]
  9. H. Sjöberg, B. Noharet, L. Wosinski, R. Hey, “Compact optical correlator: preprocessing and filter encoding strategies applied to images with varying illumination,” Opt. Eng. 37, 1316–1324 (1998). [CrossRef]
  10. E. Perez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, M. S. Millan, “Dual nonlinear correlator based on computer controlled joint transform processor: digital analysis and optical results,” J. Mod. Opt. 44, 1535–1552 (1997). [CrossRef]
  11. P. Garcia-Martinez, D. Mas, J. Garcia, C. Ferreira, “Nonlinear morphological correlation: optoelectronic implementation,” Appl. Opt. 37, 2112–2118 (1998). [CrossRef]
  12. P. Garcia-Martinez, H. H. Arsenault, S. Roy, “Optical implementation of the sliced orthogonal nonlinear generalized correlation for images degraded by nonoverlapping background noise,” Opt. Commun. 173, 185–193 (2000). [CrossRef]
  13. P. Maragos, “Morphological correlation and mean absolute error criteria,” IEEE Trans. Acoust., Speech Signal Process. 3, 1568–1571 (1989).
  14. W. C. Hasenplaugh, M. A. Neifeld, “Image binarization techniques for correlation-based pattern recognition,” Opt. Eng. 38, 1907–1917 (1999). [CrossRef]
  15. M. S. Alam, M. A. Karim, “Joint-transform correlation under varying illumination,” Appl. Opt. 32, 4351–4356 (1993). [CrossRef] [PubMed]
  16. S. Jutamulia, G. M. Storti, D. A. Gregory, J. C. Kirsch, “Illumination-independent high efficient joint-transform correlation,” Appl. Opt. 30, 4173–4175 (1991). [CrossRef] [PubMed]
  17. B. Javidi, J. Li, A. H. Fazlollahi, J. Horner, “Binary nonlinear joint transform correlator performance with different thresholding under unknown illumination conditions,” Appl. Opt. 34, 886–896 (1995). [CrossRef] [PubMed]
  18. P. Garcia-Martínez, H. H. Arsenault, “A correlation matrix representation using the sliced orthogonal nonlinear generalized decomposition,” Opt. Commun. 172, 181–192 (1999). [CrossRef]
  19. P. Garcia-Martínez, Ph. Réfrégier, H. H. Arsenault, C. Ferreira, “Maximum likelihood for target location in the presence of substitutive noise,” Appl. Opt. 40, 3855–3860 (2001). [CrossRef]
  20. M. Tejera, P. Garcia-Martinez, C. Ferreira, D. Lefebvre, H. H. Arsenault, “Weighted nonlinear correlation for controlled discrimination capability,” Opt. Commun. 201, 29–37 (2002). [CrossRef]
  21. F. M. Dickey, L. A. Romero, “Normalized correlation for pattern recognition,” Opt. Lett. 16, 1186–1188 (1991). [CrossRef] [PubMed]
  22. O. Germain, P. Réfrégier, “Optimal snake-based segmentation of a random luminance target on a spatially disjoint background,” Opt. Lett. 22, 1845–1847 (1996). [CrossRef]
  23. S. Jutamulia, D. A. Gregory, “Soft blocking of the dc term in Fourier optical systems,” Opt. Eng. 37, 49–51 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited