OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 32 — Nov. 11, 2002
  • pp: 6890–6893

Contra-directional two-beam coupling by use of a single input beam in an iron-doped lithium niobate multimode fiber

D. R. Evans, M. A. Saleh, T. J. Bunning, L. Lu, R. S. Meltzer, W. M. Yen, and S. Guha  »View Author Affiliations

Applied Optics, Vol. 41, Issue 32, pp. 6890-6893 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (122 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Experimental results are presented for 180° contra-directional two-beam coupling (TBC) measurements in a single crystal fiber of LiNbO3:Fe using a single incident beam and its Fresnel reflection off the back surface of the fiber. To our knowledge, this is the first time that volume gratings have been written in a fiber using this beam coupling geometry. At small f-numbers, the TBC efficiency has been predicted to decrease in bulk LiNbO3:Fe due to the erasure of the weak gratings by the dark conductivity. We present experimental results validating the published theory and show experimentally that confinement of the interfering beams in a fiber geometry overcomes this limitation.

© 2002 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5330) Nonlinear optics : Photorefractive optics

Original Manuscript: May 29, 2002
Revised Manuscript: August 21, 2002
Published: November 10, 2002

D. R. Evans, M. A. Saleh, T. J. Bunning, L. Lu, R. S. Meltzer, W. M. Yen, and S. Guha, "Contra-directional two-beam coupling by use of a single input beam in an iron-doped lithium niobate multimode fiber," Appl. Opt. 41, 6890-6893 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett 13, 223–225 (1968). [CrossRef]
  2. J. Wilde, R. McRuer, L. Hesselink, J. Goodman, Digital Optical Computing, R. Arrathoon, ed., SPIE752, 200–208 (1986).
  3. G. A. Rakuljic, V. Leyva, “Volume holographic narrow-optical filter,” Opt. Lett. 18, 459–461 (1993). [CrossRef] [PubMed]
  4. B. H. Soffer, G. J. Dunning, Y. Owechko, E. Marom, “Associative holographic memory with feedback using phase-conjugate mirrors.” Opt. Lett. 11, 118–120 (1986). [CrossRef]
  5. S. M. Jensen, R. W. Hellwarth, “Generation of time-reversed waves by nonlinear refraction in a waveguide,” Appl. Phys. Lett. 33, 404–405 (1978). [CrossRef]
  6. P. Günter, J. P. Huignard, Photorefractive Materials and Their Application I (Springer-Verlag, Berlin, 1988).
  7. Y. H. Ja, “Energy transfer between two beams in writing a reflection volume hologram in a dynamic medium,” Opt. Quantum Electron. 14, 547–556 (1982). [CrossRef]
  8. P. Yeh, “Contra-directional two-wave mixing in photorefractive media,” Optics Commun. 45, 323–326 (1983). [CrossRef]
  9. K. R. MacDonald, J. Feinberg, Z. Z. Ming, Peter Günter, “Asymmetric transmission through a photorefractive crystal of barium titanate,” Optics Commun. 50, 146–150 (1984). [CrossRef]
  10. G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, T. W. Vere, “Optical limiting with lithium niobate,” Power Limiting Materials and Devices, C. M. Lawson, ed., Proc. SPIE3798, 2–16 (1999).
  11. G. Cook, J. P. Duignan, L. L. Taylor, D. C. Jones, “Developing photorefractive fibers for optical limiting,” in Linear, Nonlinear, and Power Limiting Organics, M. Eich, M. G. Kuzyk, C. M. Lawson, R. A. Norwood, eds. Proc. SPIE4106, 230–244 (2000).
  12. F. Ito, K.-I. Kitayama, O. Nakao, “Enhanced two-wave mixing in a photorefractive waveguide having a periodically reversed c-axis by electrical poling technique,” Appl. Phys. Lett. 60, 793–795 (1992). [CrossRef]
  13. L. Hesselink, S. Redfield, “Photorefractive holographic recording in strontium barium niobate fibers,” Opt. Lett. 13, 877–879 (1988). [CrossRef] [PubMed]
  14. K.-I. Kitayama, F. Ito, “Holographic memory using long photorefractive fiber array,” Opt. Mater. 4, 392–398 (1995). [CrossRef]
  15. Y. Yu, S. Yin, “Photorefractive Optics Materials, Properties, and Applications (Academic, San Diego, Calif, 2000).
  16. M. M. Fejer, J. L. Nightengale, G. A. Magel, R. L. Byer, “Laser-heated pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984). [CrossRef]
  17. R. S. Feigelson, W. L. Kway, R. K. Route, “Single crystal fibers by the laser-heated pedestal growth method,” Opt. Eng. 24, 1102–1107 (1985).
  18. F. Ritzert, L. Westfall, “Making single-crystal fibers in a laser-heated floating zone,” Technical Support Package, NASA Tech Briefs, LEW-165391–23 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited