OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 32 — Nov. 11, 2002
  • pp: 6894–6900

Polarization optimization in the interference of four umbrellalike symmetric beams for making three-dimensional periodic microstructures

Xiulun Yang, Luzhong Cai, and Qing Liu  »View Author Affiliations


Applied Optics, Vol. 41, Issue 32, pp. 6894-6900 (2002)
http://dx.doi.org/10.1364/AO.41.006894


View Full Text Article

Enhanced HTML    Acrobat PDF (109 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A systematic and comprehensive analysis of the interference of four umbrellalike beams (IFUB) is provided based on the reciprocal space theory. The concept of pattern contrast is extended to the case of the IFUB, and it is indicated that a uniform contrast for all the interference terms can be obtained by properly choosing the beam ratio and the polarization of each beam. Different polarization combinations, including linear light and linear light, circular light and circular light, and linear light and circular light, have been discussed for the purpose of maximum uniform contrast. It is shown that the use of circular light may generally improve the uniform contrast. This study may lay a theoretical foundation for holographic fabrication of three-dimensional (3D) periodic microstructures, such as simple cubic, body-centered cubic, face-centered cubic, or trigonal lattice.

© 2002 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.5430) Physical optics : Polarization

History
Original Manuscript: June 7, 2002
Revised Manuscript: August 20, 2002
Published: November 10, 2002

Citation
Xiulun Yang, Luzhong Cai, and Qing Liu, "Polarization optimization in the interference of four umbrellalike symmetric beams for making three-dimensional periodic microstructures," Appl. Opt. 41, 6894-6900 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-32-6894


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, P. R. Villeneuve, S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). [CrossRef]
  2. T. F. Krauss, R. M. De La Rue, “Photonic crystals in the optical regime—past, present and future,” Prog. Quantum Electron. 23, 51–96 (1999). [CrossRef]
  3. C. C. Cheng, A. Scherer, R. Tyan, Y. Fainman, G. Witzgall, E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15, 2764–2767 (1997). [CrossRef]
  4. A. van Blaaderen, R. Ruel, P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385, 321–324 (1997). [CrossRef]
  5. M. C. Wanke, O. Lehmann, K. Müller, Q. Wen, M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275, 1284–1286 (1997). [CrossRef] [PubMed]
  6. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999). [CrossRef]
  7. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000). [CrossRef] [PubMed]
  8. T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001). [CrossRef]
  9. L. Z. Cai, X. L. Yang, Y. R. Wang, “Formation of a microfiber bundle by interference of three noncoplanar beams,” Opt. Lett. 26, 1858–1860 (2001). [CrossRef]
  10. L. Z. Cai, X. L. Yang, Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49, 1663–1672 (2002). [CrossRef]
  11. L. Z. Cai, X. L. Yang, Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002). [CrossRef]
  12. X. L. Yang, L. Z. Cai, “Wave design of the interference of three noncoplanar beams for microfiber fabrication,” Opt. Commun. 208, 293–297 (2002). [CrossRef]
  13. L. Z. Cai, X. L. Yang, Y. R. Wang, “Formation of three-dimensional periodical microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am. A (to be published).
  14. K. I. Petsas, A. B. Coates, G. Grynberg, “Crystallography of optical lattices,” Phys. Rev. A 50, 5173–5789 (1994). [CrossRef] [PubMed]
  15. E. Hecht, A. Zajac, Optics. (Addison-Wesley, Reading, Massachusetts1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited