OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 33 — Nov. 20, 2002
  • pp: 6950–6956

Laser-induced fluorescence detection of atmospheric NO2 with a commercial diode laser and a supersonic expansion

Patricia A. Cleary, Paul J. Wooldridge, and Ronald C. Cohen  »View Author Affiliations

Applied Optics, Vol. 41, Issue 33, pp. 6950-6956 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (221 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Routine observations of atmospheric NO2 at concentrations ranging from 0.1 to 100 parts per billion are needed for air quality monitoring and for the evaluation of photochemical models. We have designed, constructed, and field tested a relatively inexpensive and specific NO2 sensor using laser-induced fluorescence. The instrument combines a commercial cw external-cavity tunable diode laser (640 nm) and a continuous supersonic expansion. The total package is completely automated, has a modest size of 0.5 m3 and 118 kg, and could be manufactured at competitive prices with the current generation of instruments. The sensitivity of the instrument is 145 parts per trillion by volume min-1 (signal-to-noise ratio of 2), which is more than adequate for monitoring purposes.

© 2002 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6260) Spectroscopy : Spectroscopy, diode lasers

Original Manuscript: June 9, 2002
Revised Manuscript: August 27, 2002
Published: November 20, 2002

Patricia A. Cleary, Paul J. Wooldridge, and Ronald C. Cohen, "Laser-induced fluorescence detection of atmospheric NO2 with a commercial diode laser and a supersonic expansion," Appl. Opt. 41, 6950-6956 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. S. Tonnesen, R. L. Dennis, “Analysis of radical propagation efficiency to assess ozone sensitivity to hydrocarbons and NOx. 1. Local indicators of instantaneous odd oxygen production sensitivity,” J. Geophys. Res. 105, 9213–9225 (2000). [CrossRef]
  2. W. A. McClenny, E. J. Williams, R. C. Cohen, J. Stutz, “Preparing to measure the effects of the NOx SIP call—methods for ambient air monitoring of NO, NO2, NOy and individual NOz species,” J. Air. Waste Manage. 52, 542–562 (2002). [CrossRef]
  3. J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).
  4. T. B. Ryerson, E. J. Williams, F. C. Fehsenfeld, “An efficient photolysis system for fast-response NO2 measurements,” J. Geophys. Res. 105, 26447–26461 (2000). [CrossRef]
  5. R. S. Gao, E. R. Keim, E. L. Woodbridge, S. J. Ciciora, M. H. Proffitt, T. L. Thompson, R. J. McLaughlin, D. W. Fahey, “New photolysis system for NO2 measurements in the lower stratosphere,” J. Geophys. Res. 99, 20673–20681 (1994). [CrossRef]
  6. J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999). [CrossRef]
  7. J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000). [CrossRef]
  8. C. Fong, W. H. Brune, “A laser induced fluorescence instrument for measuring tropospheric NO2,” Rev. Sci. Instrum. 68, 4253–4262 (1997). [CrossRef]
  9. Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, Y. Kondo, “High-sensitivity instrument for measuring atmospheric NO2,” Anal. Chem. 73, 5485–5493 (2001). [CrossRef]
  10. J. Matsumoto, J. Hirokawa, H. Akimoto, Y. Kajii, “Direct measurement of NO2 in the marine atmosphere by laser-induced fluorescence technique,” Atmos. Environ. 35, 2803–2814 (2001). [CrossRef]
  11. J. A. Thornton, P. J. Wooldridge, R. C. Cohen, “Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios,” Anal. Chem. 72, 528–539 (2000). [CrossRef] [PubMed]
  12. K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001). [CrossRef]
  13. J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME: Part I. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range,” J. Quan. Spectros. Radiat. Transfer 60, 1025–1031 (1998). [CrossRef]
  14. J. C. D. Brand, K. J. Cross, A. R. Hoy, “Resonance fluorescence intensities and vibrational assignments in the A2B2 state of NO2,” Can. J. Phys. 60, 1081–1087 (1982). [CrossRef]
  15. D. Herriott, R. Kompfner, H. Kogelnik, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964). [CrossRef]
  16. D. R. Miller, “Free jet sources,” in Atomic and Molecular Beam Methods, G. Scoles, ed. (Oxford U. Press, New York, 1988), pp. 14–53.
  17. J. A. Thornton, “Nitrogen dioxide, peroxynitrates and the chemistry of tropospheric ozone production: new insights from in situ measurements,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., (2002).
  18. R. E. Smalley, L. Wharton, D. H. Levy, “Fluorescence excitation spectrum of rotationally cooled NO2,” J. Chem. Phys. 63, 4977–4989 (1975). [CrossRef]
  19. A. Delon, R. Jost, M. Jacon, “Laser induced dispersed fluorescence spectroscopy of 107 vibronic levels of NO2 ranging from 12000 to 17600 cm-1,” J. Chem. Phys. 114, 331–344 (2001). [CrossRef]
  20. D. A. Day, P. J. Wooldridge, M. B. Dillon, J. A. Thornton, R. C. Cohen, “A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3,” J. Geophys. Res. 107, 10.129/2001JD000779 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited