OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 33 — Nov. 20, 2002
  • pp: 6980–6990

Effects of laser phase noise on the injection of a high-finesse cavity

Jérôme Morville, Daniele Romanini, Marc Chenevier, and Alexander Kachanov  »View Author Affiliations

Applied Optics, Vol. 41, Issue 33, pp. 6980-6990 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (208 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the response of a high-finesse optical cavity to a cw laser during the laser frequency passage through resonance. For a laser that is spectrally larger than the cavity resonance, laser-field phase fluctuations are converted into amplitude fluctuations, and cavity injection is intrinsically noisy. We develop a model based on Schawlow-Townes spontaneous-emission laser broadening and discuss in detail its effects on high-sensitivity spectroscopic techniques such as cavity-enhanced absorption or cavity ring-down spectroscopy. We present realistic simulations of cavity injection during a sweep through resonance and calculation of statistical quantities such as the average injection efficiency. Agreement with experimental observations is established.

© 2002 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(300.6260) Spectroscopy : Spectroscopy, diode lasers

Original Manuscript: February 7, 2002
Revised Manuscript: June 24, 2002
Published: November 20, 2002

Jérôme Morville, Daniele Romanini, Marc Chenevier, and Alexander Kachanov, "Effects of laser phase noise on the injection of a high-finesse cavity," Appl. Opt. 41, 6980-6990 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Statz, T. Dorschner, M. Holtz, I. Smith, “The multioscillator ring laser gyroscope,” in Laser Handbook, M. L. Stitch, M. Bass, eds. (Elsevier, North Holland, Amsterdam, 1985), Vol. 4, pp. 231–310.
  2. D. Z. Anderson, J. C. Frisch, C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238–1245 (1984). [CrossRef] [PubMed]
  3. C. Tanner, B. Masterson, C. Wieman, “Atomic beam collimation using a laser diode with a self-locking power-buildup cavity,” Opt. Lett. 13, 357–359 (1988). [CrossRef] [PubMed]
  4. C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991). [CrossRef]
  5. J. Ye, L. Ma, J. Hall, “Cavity-enhanced frequency modulation spectroscopy: advancing optical detection sensitivity and laser frequency stabilization,” in Methods for Ultrasensitive Detection, B. L. Fearey, ed., Proc. SPIE3270, 85–96 (1998).
  6. J. Ye, “Using FM methods with molecules in a high finesse cavity: a demonstrated path to 10-12 absorption sensitivity,” in Cavity-Ringdown Spectroscopy—An Ultratrace-Absorption Measurement Technique, K. W. Busch, M. A. Busch, eds. (American Chemical Society, Washington, D.C., 1999), pp. 233–252.
  7. K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994). [CrossRef]
  8. R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998). [CrossRef]
  9. G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000). [CrossRef]
  10. K. Busch, M. Busch, Cavity-Ringdown Spectroscopy—An Ultratrace-Absorption Measurement Technique (American Chemical Society, Washington, D.C., 1999).
  11. L. Gianfrani, R. Fox, L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247–2254 (1999). [CrossRef]
  12. A. O’Keefe, J. J. Scherer, J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349 (1999). [CrossRef]
  13. J. B. Paul, L. Lapson, J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910 (2001). [CrossRef]
  14. R. Peeters, G. Berden, A. Apituley, G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000). [CrossRef]
  15. New Focus Inc., catalog, (New Focus, Santa Clara, Calif., 1999), p. 32.
  16. K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996). [CrossRef]
  17. D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW-cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997). [CrossRef]
  18. J. Poirson, F. Bretenaker, M. Vallet, A. L. Floch, “Analytical and experimental study of ringing effects in a Fabry-Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14, 2811–2817 (1997). [CrossRef]
  19. Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry-Perot interferometer,” Opt. Commun. 100, 240–246 (1993). [CrossRef]
  20. K. An, C. Yang, R. Dasari, M. Feld, “Cavity ring-down technique and its application to the measurement of ultraslow velocities,” Opt. Lett. 20, 1068–1070 (1995). [CrossRef] [PubMed]
  21. Z. Li, R. Bennett, G. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991). [CrossRef]
  22. M. Lawrence, B. Willke, M. Husman, E. Gustafson, R. Byer, “Dynamic response of a Fabry-Perot interferometer,” J. Opt. Soc. Am. B 16, 523–532 (1999). [CrossRef]
  23. J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, H. W. Lee, “Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38, 1859–1865 (1999). [CrossRef]
  24. A. L. Schawlow, C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958). [CrossRef]
  25. K. Petermann, Laser Diode Modulation and Noise (Kluwer Scientific, Tokyo, 1991).
  26. K. Vahala, L. Chiu, S. Margalit, A. Yariv, “On the linewidth enhancement factor α in semiconductor injection lasers,” Appl. Phys. Lett. 42, 631–633 (1983). [CrossRef]
  27. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995).
  28. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).
  29. Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000). [CrossRef]
  30. J. Morville, “Injection des cavités optiques de haute finesse par laser à diode—application à la CW-CRDS et à la détection de traces atmosphériques,” Ph.D. dissertation (Université Joseph Fourier, Grenoble, France, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited