OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 33 — Nov. 20, 2002
  • pp: 7018–7024

Influence of scattering on transmission through long-period fiber gratings and tunable microstructure fibers

Peter Mach, Charles Kerbage, Sharad Ramanathan, Robert S. Windeler, Benjamin J. Eggleton, and John A. Rogers  »View Author Affiliations

Applied Optics, Vol. 41, Issue 33, pp. 7018-7024 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (794 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Controlled optical scattering within or around an optical fiber provides a potentially useful means for adjusting its transmission characteristics. This approach can complement conventional methods based on the establishment of well-defined variations in the index of refraction of the core or the cladding of the fiber. We describe the use of a highly scattering submonolayer of nanoparticles deposited onto the fiber surface for adjusting the resonance wavelength, depth, and width of an in-fiber long-period grating filter. We also introduce a polymer-dispersed liquid-crystal material that has a thermally tunable scattering cross section and can be incorporated into the channels of a microstructure optical fiber; this system may provide the means for a fiber-based scattering switch.

© 2002 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(160.3710) Materials : Liquid crystals
(230.3990) Optical devices : Micro-optical devices

Original Manuscript: March 12, 2002
Revised Manuscript: August 1, 2002
Published: November 20, 2002

Peter Mach, Charles Kerbage, Sharad Ramanathan, Robert S. Windeler, Benjamin J. Eggleton, and John A. Rogers, "Influence of scattering on transmission through long-period fiber gratings and tunable microstructure fibers," Appl. Opt. 41, 7018-7024 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).
  2. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997). [CrossRef]
  3. P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 29, 1343–1345 (1993).
  4. H. Mavoori, S. Jin, R. P. Espindola, T. A. Strasser, “Enhanced thermal and magnetic actuations for broad-range tuning of fiber Bragg grating-based reconfigurable add-drop devices,” Opt. Lett. 24, 714–716 (1999). [CrossRef]
  5. V. Grubsky, J. Feinberg, “Long-period fiber gratings with variable coupling for real-time sensing applications,” Opt. Lett. 25, 203–205 (2000). [CrossRef]
  6. J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, T. A. Strasser, “Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp,” Appl. Phys. Lett. 74, 3131–3133 (1999). [CrossRef]
  7. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Technol. 18, 1084–1100 (2000). [CrossRef]
  8. C. E. Kerbage, B. J. Eggleton, P. S. Westbrook, R. S. Windeler, “Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,” Opt. Exp. 7, 113–122 (2000); http://www.opticsexpress.org . [CrossRef]
  9. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999). [CrossRef] [PubMed]
  10. J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998). [CrossRef] [PubMed]
  11. P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002). [CrossRef]
  12. A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 12, 445–447 (1999). [CrossRef]
  13. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000). [CrossRef]
  14. A. Hale, B. J. Eggleton (OFS Laboratories, Murray Hill, N.J.), and S. Ramanathan (Lucent Technologies, Murray Hill, N.J.) (personal communication, 2001).
  15. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996). [CrossRef]
  16. K. Amundson, A. van Blaaderen, P. Wiltzius, “Morphology and electro-optic properties of polymer-dispersed liquid crystal films,” Phys. Rev. E 55, 1646–1654 (1997). [CrossRef]
  17. S. A. Vasiliev, E. M. Dianov, D. Varelas, H. G. Limberger, R. P. Salathe, “Postfabrication resonance peak positioning of long-period cladding-mode-coupled gratings,” Opt. Lett. 21, 1830–1832 (1996). [CrossRef] [PubMed]
  18. S. C. Kim, Y. C. Jeong, S. W. Kim, J. J. Kwon, N. K. Park, B. H. Lee, “Control of the characteristics of a long-period grating by cladding etching,” Appl. Opt. 39, 2038–2042 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited