OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 33 — Nov. 20, 2002
  • pp: 7052–7057

Temperature Dependence of the 1.06- μm Stimulated Emission Cross Section of Neodymium in YAG and in GSGG

Alexandra Rapaport, Shengzhi Zhao, Guohua Xiao, Andrew Howard, and Michael Bass  »View Author Affiliations


Applied Optics, Vol. 41, Issue 33, pp. 7052-7057 (2002)
http://dx.doi.org/10.1364/AO.41.007052


View Full Text Article

Acrobat PDF (139 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A linear temperature dependence between −70 °C and +70 °C is reported for the peak stimulated emission cross section of Nd3+ ions in both yttrium aluminum garnet (YAG) and gadolinium scandium gallium garnet (GSGG).

© 2002 Optical Society of America

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(140.6810) Lasers and laser optics : Thermal effects
(160.3380) Materials : Laser materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

Citation
Alexandra Rapaport, Shengzhi Zhao, Guohua Xiao, Andrew Howard, and Michael Bass, "Temperature Dependence of the 1.06- μm Stimulated Emission Cross Section of Neodymium in YAG and in GSGG," Appl. Opt. 41, 7052-7057 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-33-7052


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Xiao, “The design of passively Q-switched solid state lasers,” doctoral dissertation (University of Central Florida and University Microfilms Incorporated, Ann Arbor, Michigan, 1998).
  2. T. Kushida, H. M. Marcos, and J. E. Geusic, “Laser transition cross-section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet,” Phys. Rev. 167, 289–291 (1968).
  3. A. A. Kaminskii, Crystalline Lasers: Physical Processes and operating Schemes (CRC Press, Boca Raton, Fla., 1996).
  4. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer-Verlag, New York, 1981).
  5. R. C. Powell, Physics of Solid-State Laser Materials (AIP Press/Springer, New York, 1998).
  6. S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
  7. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3, 102–113 (1986).
  8. D. S. Sumida, M. S. Mangir, D. A. Rockwell, and M. D. Shinn, “Laser-related properties of chromium- and neodymium-doped gadolinium scandium aluminum garnet (Cr:Nd:GSAG),” J. Opt. Soc. Am. B 11, 2066–2078 (1994).
  9. V. A. Buchenkov, I. B. Vitrishchak, V. G. Evdokimova, L. N. Soms, A. I. Stepanov, and V. K. Stupnikov, “Temperature dependence of giant pulse amplification in YAG:Nd3+,” Sov. J. Quantum Electron. 11, 702–705 (1981).
  10. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
  11. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
  12. U. Brauch and J. Muckenschnabel, “Temperature dependence of flashlamp-pumped Nd:YAG and Nd:Cr:GSGG lasers,” Opt. Commun. 73, 62–66 (1989).
  13. G. Armagan and B. DiBartolo, Tunable Solid State Lasers II (Springer-Verlag, Berlin, 1986).
  14. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1999)
  15. W. F. Krupke, “Induced-emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10, 450–457 (1974).
  16. I. Garcia-Rubio, J. A. Pardo, R. I. Merino, R. Cases, and V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. of Lumin. 86, 147–153 (2000).
  17. Th. Forster, “Transfer mechanisms of electronic excitation energy,” Radiat. Res. Suppl. 2, 326–339 (1960).
  18. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
  19. V. P. Sakun, “Kinetics of energy transfer in a crystal,” Sov. Phys. Solid State 14, 1906–1914 (1973).
  20. T. T. Basiev, E. M. Dianov, A. M. Prokhorov, and I. A. Shcherbakov, “Quantum yield of the luminescence radiation emitted from the metastable state of Nd3+ in silicate glasses and Y3Al5O12 crystals,” Sov. Phys. Dokl 19, 288–289 (1974).
  21. T. Y. Fan and J. L. Daneu, “Thermal coefficients of the optical path length and refractive index in YAG,” Appl. Opt. 37, 1635–1637 (1998).
  22. D. C. Brown, “Nonlinear thermal distortion in YAG rod amplifiers,” IEEE J. Quantum Electron. 34, 2383–2392 (1998).
  23. M. Bass, L. S. Weichman, and S. R. Vigil, “Predicting the temperature dependence of solid-state lasers,” presented at the International Quantum Electronics Conference/Lasers, Applications, and Technologies Conference, Moscow, Russia, 23 June 2002.
  24. A. L. Denisov, V. G. Ostroumov, Z. S. Saidov, V. A. Smirnov, and I. A. Shcherbakov, “Spectral and luminescence properties of Cr and Nd ions in gallium garnet crystals,” J. Opt. Soc. Am. B 3, 95–101 (1986).
  25. C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited