OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 33 — Nov. 20, 2002
  • pp: 7058–7067

Remote sensing of oligotrophic waters: model divergence at low chlorophyll concentrations

Hela Mehrtens and Thomas Martin  »View Author Affiliations


Applied Optics, Vol. 41, Issue 33, pp. 7058-7067 (2002)
http://dx.doi.org/10.1364/AO.41.007058


View Full Text Article

Enhanced HTML    Acrobat PDF (191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of the OC2 Sea-viewing Wide Field-of-view Sensor (SeaWiFS) algorithm based on 490- and 555-nm water-leaving radiances at low chlorophyll contents is compared with those of semianalytical models and a Monte Carlo radiative transfer model. We introduce our model, which uses two particle phase functions and scattering coefficient parameterizations to achieve a backscattering ratio that varies with chlorophyll concentration. We discuss the various parameterizations and compare them with existent measurements. The SeaWiFS algorithm could be confirmed within an accuracy of 35% over a chlorophyll range from 0.1 to 1 mg m-3, whereas for lower chlorophyll concentrations we found a significant overestimation of the OC2 algorithm.

© 2002 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.1350) Scattering : Backscattering
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: January 18, 2002
Revised Manuscript: July 15, 2002
Published: November 20, 2002

Citation
Hela Mehrtens and Thomas Martin, "Remote sensing of oligotrophic waters: model divergence at low chlorophyll concentrations," Appl. Opt. 41, 7058-7067 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-33-7058


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kharu, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998). [CrossRef]
  2. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, in “An overview of SeaWiFS and Ocean Color,” S. B. Hooker, E. R. Firestone, eds., NASA Tech. Mem. 1045661, (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).
  3. C. Y. Omachi, C. A. E. Garcia, “Analysis of empirical algorithms of surface chlorophyll-a for SeaWiFS in the southwestern Atlantic ocean,” presented at the Ocean Optics XV meeting, Monaco, 16–20 October 2000.
  4. G. Alarcon, O. Ulloa, G. Yuras, V. Montecino, G. Pizarro, “Phytoplankton pigment concentration off northern and central Chile: comparison between estimates from in situ remote sensing reflectance and SeaWiFS,” presented at the Ocean Optics XV meeting, Monaco, 16–20 October 2000.
  5. O. A. Bukin, A. N. Pavlov, M. S. Permyakov, A. Yu. Major, O. G. Konstantinov, A. V. Mallenok, S. A. Ogay, “Continuous measurements of chlorophyll-a concentration in the Pacific Ocean by shipborne laser fluorometer and radiometer: comparison with SeaWiFS data,” Int. J. Remote Sens. 22, 415–427 (2001). [CrossRef]
  6. A. Oschlies, V. Garcon, “An eddy-permitting coupled physical-biological model of the North Atlantic. I. Sensitivity to advection numerics and mixed layer physics,” Global Biogeochem. Cycles 13, 135–160 (1999). [CrossRef]
  7. A. Oschlies, W. Koeve, V. Garcon, “An eddy-permitting coupled physical-biological model of the North Atlantic. II. Ecosystem dynamics and comparison with satellite and JGOFS local studies data,” Global Biogeochem. Cycles 14, 499–523 (2000). [CrossRef]
  8. A. Macke, D. L. Mitchell, L. von Bremen, “Monte Carlo radiative transfer calculations for inhomogeneous mixed phase clouds,” Phys. Chem. Earth B 24, 237–241 (1999). [CrossRef]
  9. G. I. Marchuk, G. A. Mikhailov, R. D. Nazareliev, R. A. Darbinjan, B. A. Kargin, B. S. Elepov, The Monte Carlo Methods in Atmospheric Optics (Springer-Verlag, Berlin, 1980).
  10. A. Morel, “Optical modeling of the upper ocean in relation to its biogeneous matter content (case I waters),” J. Geophys. Res. 93, 10,749–10,768 (1988). [CrossRef]
  11. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  12. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988). [CrossRef]
  13. E. Aas, N. K. Højerslev, “Analysis of underwater radiance observations: apparent optical properties and analytic functions describing the angular radiance distribution,” J. Geophys. Res. 104, 8015–8024 (1999). [CrossRef]
  14. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  15. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1993). [CrossRef]
  16. A. Morel, “In-water and remote measurements of ocean color,” Boundary-Layer Meteorol. 18, 177–201 (1980). [CrossRef]
  17. L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on specific absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981). [CrossRef]
  18. H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review, Vol. 4 of Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983), p. 114.
  19. A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001). [CrossRef]
  20. S. Sathyendranath, G. Cota, V. Stuart, H. Maass, T. Platt, “Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches,” Int. J. Remote Sens. 22, 249–273 (2001). [CrossRef]
  21. O. V. Kopelevich, “Small-parameter model of optical properties of sea water,” in Physical Ocean Optics, A. S. Monin, ed., Vol. 1 of Ocean Optics (NaukaMoscow, 1983), Chap. 8.
  22. R. Iturriga, D. Siegel, “Microphotometric characterization of phytoplankton and detrital absorption properties in the Sargasso Sea,” Limnol. Oceanogr. 34, 1706–1726 (1989). [CrossRef]
  23. A. Bricaud, D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990). [CrossRef]
  24. S. A. Garver, D. A. Siegel, B. G. Mitchell, “Variability in near-surface particulate absorption spectra: what can a satellite ocean color imager see?” Limnol. Oceanogr. 39, 1349–1367 (1994). [CrossRef]
  25. F. E. Hoge, P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16,631–16,648 (1996). [CrossRef]
  26. A. H. Barnard, W. S. Pegau, J. R. V. Zanefeld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res. 103, 24,955–24,968 (1998). [CrossRef]
  27. T. Petzold, “Volume scattering functions for selected ocean waters,” SIO Ref 72-78 (Scripps Institution of Oceanography, La Jolla, Calif., 1972).
  28. H. Loisel, D. Stramski, B. G. Mitchell, F. Fell, V. Fournier-Sicre, B. Lemasle, M. Babin, “Comparison of the ocean inherent optical properties obtained from measurements and inverse modeling,” Appl. Opt. 40, 2384–2397 (2001). [CrossRef]
  29. D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991). [CrossRef]
  30. V. I. Haltrin, G. Kattawar, “Light fields with Raman scattering and fluorescence in sea water,” Tech. Rep. (Texas AM University, College Station, Tex., 1991).
  31. C. D. Mobley, L. K. Sundman, E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2001). [CrossRef]
  32. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993). [CrossRef] [PubMed]
  33. H. R. Gordon, “Bio-optical model describing the distribution of irradiance at the sea surface resulting from a point source embedded in the ocean,” Appl. Opt. 26, 4133–4148 (1987). [CrossRef] [PubMed]
  34. A. Bricaud, C. Roesler, J. R. Zanefeld, “In situ methods for measuring the inherent optical properties of ocean waters,” Limnol. Oceanogr. 40, 393–410 (1995). [CrossRef]
  35. C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption-spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989). [CrossRef]
  36. P. J. Werdell, S. W. Bailey, G. S. Fargion, “SeaBASS data protocols and policy,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion, J. L. Mueller, eds. NASA Tech. Memo. 2000-209966 (NASA Goddard Space Flight Center, Greenbelt, Md., 2000), pp. 170–172.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited