OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 33 — Nov. 20, 2002
  • pp: 7068–7078

Retrieval of CO from nadir remote-sensing measurements in the infrared by use of four different inversion algorithms

Cathy Clerbaux, Juliette Hadji-Lazaro, Sébastien Payan, Claude Camy-Peyret, Jinxue Wang, David P. Edwards, and Ming Luo  »View Author Affiliations

Applied Optics, Vol. 41, Issue 33, pp. 7068-7078 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (192 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Four inversion schemes based on various retrieval approaches (digital gas correlation, nonlinear least squares, global fit adjustment, and neural networks) developed to retrieve CO from nadir radiances measured by such downward-looking satelliteborne instruments as the Measurement of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Infrared Atmospheric Sounding Interferometer (IASI) instruments were compared both for simulated cases and for atmospheric spectra recorded by the Interferometric Monitor for Greenhouse Gases (IMG). The sensitivity of the retrieved CO total column amount to properties that may affect the inversion accuracy (noise, ancillary temperature profile, and water-vapor content) was investigated. The CO column amounts for the simulated radiance spectra agreed within 4%, whereas larger discrepancies were obtained when atmospheric spectra recorded by the IMG instrument were analyzed. The assumed vertical temperature profile is shown to be a critical parameter for accurate CO retrieval. The instrument’s line shape was also identified as a possible cause of disagreement among the results provided by the groups of scientists who are participating in this study.

© 2002 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.7030) Atmospheric and oceanic optics : Troposphere
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6340) Spectroscopy : Spectroscopy, infrared

Original Manuscript: February 18, 2002
Revised Manuscript: July 1, 2002
Published: November 20, 2002

Cathy Clerbaux, Juliette Hadji-Lazaro, Sébastien Payan, Claude Camy-Peyret, Jinxue Wang, David P. Edwards, and Ming Luo, "Retrieval of CO from nadir remote-sensing measurements in the infrared by use of four different inversion algorithms," Appl. Opt. 41, 7068-7078 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. World Meteorological Organization, Global Ozone Research and Monitoring Project, Scientific Assessment of Ozone Depletion: 1998 (World Meteorological Organization, Geneva, 1997), Vol. 44.
  2. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, C. Maskell, eds., Climate Change 2001: The Scientific Basis, contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, Cambridge, 2001).
  3. H. G. Reichle, V. S. Connors, J. A. Holland, W. D. Hypes, H. A. Wallio, J. C. Casas, B. B. Gormsen, M. S. Saylor, W. D. Hesketh, “Middle and upper tropospheric carbon monoxide mixing ratios as measured by a satellite-borne remote sensor during November 1981,” J. Geophys. Res. D 9110,865–10,887 (1986). [CrossRef]
  4. H. G. Reichle, V. S. Connors, J. A. Holland, R. T. Sherrill, H. A. Wallio, J. C. Casas, E. P. Condon, B. B. Gormsen, W. Seiler, “The distribution of middle tropospheric carbon monoxide during early October 1984,” J. Geophys. Res. D 95, 9845–9856 (1990). [CrossRef]
  5. V. S. Connors, B. B. Gormsen, S. Nolf, H. G. Reichle, “Spaceborne observations of the global distribution of carbon monoxide in the middle troposphere during April and October 1994,” J. Geophys. Res. D 104, 21,455–21,470 (1999). [CrossRef]
  6. H. G. Reichle, B. E. Anderson, V. S. Connors, T. C. Denkins, D. A. Forbes, B. B. Gormsen, R. L. Langenfelds, D. O. Neil, S. R. Nolf, P. C. Novelli, N. S. Pougatchev, M. M. Roell, L. P. Steele, “Space shuttle based global CO measurements during April and October 1994, MAPS instrument, data reduction and data validation,” J. Geophys. Res. D 104, 21,443–21,454 (1999). [CrossRef]
  7. C. P. Rinsland, M. R. Gunson, R. Zander, M. Lopez-Puertas, “Middle and upper atmosphere pressure-temperature profiles and the abundances of CO2 and CO in the upper atmosphere from ATMOS/Spacelab 3 observations,” J. Geophys. Res. D 97, 20,479–20,495 (1992). [CrossRef]
  8. H. Kobayashi, A. Shimota, K. Kondo, E. Okumura, Y. Kameda, H. Shimoda, T. Ogawa, “A high-throughput Fourier-transform infrared radiometer for nadir Earth observations,” Appl. Opt. 38, 6801–6807 (1999). [CrossRef]
  9. H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999). [CrossRef]
  10. J. R. Drummond, G. S. Mand, “The measurement of pollution in the troposphere,” J. Atmos. Oceanic Technol. 13, 314–320 (1996). [CrossRef]
  11. D. P. Edwards, J.-L. Attié, J.-F. Lamarque, D. Ziskin, J. C. Gille, B. Khattatov, M. Deeter, M. Smith, J. Warner, G. L. Francis, C. Cavanaugh, L. Mayer, J. Chen, J. Drummond, G. Mand, Z. Yu, “MOPITT observations of enhanced CO concentrations over Africa due to biomass burning,” presented at the American Geophysical Union’s 2000 Fall Meeting, San Francisco, Calif., 15–19 December 2000.
  12. J.-L. Attié, J. Gille, M. Deeter, D. P. Edwards, B. Katthatov, J.-F. Lamarque, L. V. Lyjak, P. Novelli, M. W. Smith, J. Warner, D. Ziskin, “Validation of CO retrievals from MOPITT instrument aboard Terra satellite, presented at the European Geophysical Society Conference, Nice, France, 25–30 March 2001.
  13. H. H. Aumann, C. Miller, “Atmospheric infrared sounder (AIRS) on the Earth Observing System,” in Advanced and Next-Generation Satellites, H. Fujisaka, N. M. Sweeting, eds., Proc. SPIE2583, 332–338 (1995).
  14. R. Beer, T. A. Glavich, D. M. Rider, “Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite,” Appl. Opt. 40, 2356–2367 (2001). [CrossRef]
  15. F. Cayla, P. Javelle, “IASI instrument overview,” in Advanced and Next-Generation Satellites, H. Fujisaka, N. M. Sweeting, eds., Proc. SPIE2583, 271–281 (1995).
  16. C. Camy-Peyret, B. Bergquist, B. Galle, M. Carleer, C. Clerbaux, R. Colin, C. Fayt, F. Goutail, M. Nunes-Pinharanda, J. P. Pommereau, M. Hausmann, U. Platt, I. Pundt, T. Rudolph, C. Hermans, P. C. Simon, A. C. Vandaele, J. M. C. Plane, N. Smith, “Intercomparison of instruments for tropospheric measurements using differential optical absorption spectroscopy,” J. Atmos. Chem. 23, 51–80 (1996). [CrossRef]
  17. A. Goldman, C. Paton-Walsh, W. Bell, G. C. Toon, J.-F. Blavier, B. Sen, M. T. Coffey, J. W. Hannigan, W. G. Mankin, “Network for the detection of stratospheric change Fourier transform infrared intercomparison at Table Mountain facility, November 1996,” J. Geophys. Res. D 104, 30,481–30,503 (1999). [CrossRef]
  18. L. S. Rothman, C. P. Rindsland, A. Golman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  19. R. G. Ellingson, Y. Fouquart, “The intercomparison of radiation codes in climate models: an overview,” J. Geophys. Res. D 96, 8925–8927 (1991). [CrossRef]
  20. S. A. Tjemkes, T. Patterson, R. Rizzi, M. W. Shephard, S. A. Clough, M. Matricardi, J. Haigh, M. Höpfner, S. Payan, A. Trotsenko, N. Scott, P. Rayer, J. Taylor, C. Clerbaux, L. L. Strow, S. DeSouza-Machado, D. Tobin, R. Knuteson, “ISSWG line-by-line intercomparison experiment,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
  21. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. 14, 609–624 (1976). [CrossRef]
  22. U. Amato, I. De Feis, C. Serio, “Linearization pseudo-noise and its effect on the retrieval of atmospheric state from infrared spectral radiances,” Geophys. Res. Lett. 23, 2565–2568 (1996). [CrossRef]
  23. B. Schimpf, F. Schreier, “Robust and efficient inversion of vertical sounding atmospheric high-resolution spectra by means of regularization,” J. Geophys. Res. D 102, 16,037–16,055 (1997). [CrossRef]
  24. P. Eriksson, “Analysis and comparison of two linear regularization methods for passive atmospheric observations,” J. Geophys. Res. D 105, 18,157–18,167 (2000). [CrossRef]
  25. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice, Vol. 2 of Series on Atmospheric, Oceanic and Planetary Physics (World Scientific, Singapore, 2000).
  26. M. T. Chahine, “Inverse problems in radiative transfer: a determination of atmospheric parameters,” J. Atmos. Sci. 27, 960–967 (1970). [CrossRef]
  27. W. L. Smith, H. M. Woolf, H. E. Revercomb, “Linear simultaneous solution for temperature and absorbing constituent profiles from radiance spectra,” Appl. Opt. 30, 1117–1123 (1991). [CrossRef] [PubMed]
  28. S. A. Clough, C. P. Rinsland, P. D. Brown, “Retrieval of tropospheric ozone from simulations of nadir spectral radiances as observed from space,” J. Geophys. Res. D 100, 16,579–16,593 (1995). [CrossRef]
  29. W. W. McMillan, L. L. Strow, B. G. Doddridge, W. L. Smith, H. E. Revercomb, H. L. Huang, “Retrieval of carbon monoxide column densities using AIRS on EOS: validation of a prototype retrieval algorithm,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays, J. Wang, eds., 2830, 169–179 (1996).
  30. H. Worden, R. Beer, C. Rindsland, “Airborne infrared spectroscopy of 1994 western wildfires,” J. Geophys. Res. D 102, 1287–1299 (1997). [CrossRef]
  31. D. P. Edwards, C. M. Halvorson, J. C. Gille, “Radiative transfer modeling for the EOS Terra satellite Measurement of Pollution in the Troposphere (MOPITT) instrument,” J. Geophys. Res. D 104, 16,755–16,775 (1999). [CrossRef]
  32. Jet Propulsion Laboratory, “Level 2 algorithm theoretical basis document,” Rep. JPL D-16474 (Jet Propulsion Laboratory, Pasadena, Calif., 1999); http://tes.jpl.nasa.gov/ .
  33. S. Payan, C. Camy-Peyret, P. Jeseck, T. Hawat, G. Durry, F. Lefevre, “First direct simultaneous HCl and ClONO2 profile measurements in the Arctic vortex,” Geophys. Res. Lett. 25, 2663–2666 (1998). [CrossRef]
  34. S. A. Clough, M. J. Iacono, “Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. D 100, 16,519–16,535 (1995). [CrossRef]
  35. J.-F. Müller, G. Brasseur, “IMAGES: a three-dimensional chemical transport model of the global troposphere,” J. Geophys. Res. D 100, 16,445–16,490 (1994). [CrossRef]
  36. C. Clerbaux, P. Chazette, J. Hadji-Lazaro, G. Mégie, J.-F. Müller, S. A. Clough, “Remote sensing of CO, CH4, and O3 using a space-borne nadir-viewing interferometer,” J. Geophys. Res. D 103, 18,999–19,013 (1998). [CrossRef]
  37. L. Pan, J. C. Gille, D. P. Edwards, P. L. Bailey, C. D. Rodgers, “Retrieval of tropospheric monoxide for the MOPITT experiment,” J. Geophys. Res. D 103, 32,277–32,290 (1998). [CrossRef]
  38. J. Wang, J. C. Gille, P. L. Bailey, L. Pan, D. Edwards, J. R. Drummond, “Retrieval of tropospheric carbon monoxide profiles from high-resolution interferometer Observations: A new digital gas correlation (DGC) method and applications,” J. Atmos. Sci. 56, 219–232 (1999). [CrossRef]
  39. J. Wang, J. C. Gille, P. L. Bailey, J. R. Drummond, L. Pan, “Instrument sensitivity and error analysis for the remote sensing of tropospheric carbon monoxide by MOPITT,” J. Atmos. Ocean. Technol. 16, 465–474 (1999). [CrossRef]
  40. J. Wang, J. Gille, H. Revercomb, V. Walden, “Validation study of the MOPITT retrieval algorithm: carbon monoxide retrieval from IMG observations during WINCE,” J. Atmos. Oceanic Technol. 17, 1285–1295 (2000). [CrossRef]
  41. M. Luo, R. Beer, D. J. Jacob, J. A. Logan, C. D. Rodgers, “Simulated observation of tropospheric ozone and CO with the Tropospheric Emission Spectrometer (TES) satellite instrument,” J. Geophys. Res.D 10.1029/2001JD000804 (2002).
  42. M. Carlotti, “Global fit approach to the analysis of limb-scanning atmospheric measurements,” Appl. Opt. 27, 3250–3254 (1988). [CrossRef] [PubMed]
  43. C. Clerbaux, J. Hadji-Lazaro, S. Payan, C. Camy-Peyret, G. Mégie, “Retrieval of CO columns from IMG/ADEOS spectra,” IEEE Trans. Geosci. Remote Sens. 37, 1657–1662 (1999). [CrossRef]
  44. J. Hadji-Lazaro, C. Clerbaux, S. Thiria, “An inversion algorithm using neural network to retrieve atmospheric CO concentrations from high-resolution nadir radiances,” J. Geophys. Res. D 104, 23,841–23,854 (1999). [CrossRef]
  45. C. Clerbaux, J. Hadji-Lazaro, S. Payan, C. Camy Peyret, J. Wang, “Intercomparison of inversion algorithms for the retrieval of CO from IMG/IASI, presented at the 8th International Workshop on Atmospheric Science from Space Using Fourier Transform Spectrometry, Toulouse, France, 16–18 November 1998.
  46. G. P. Brasseur, D. A. Hauglustaine, S. Walters, P. J. Rasch, J.-F. Müller, C. Granier, X. X. Tie, “MOZART, a global chemical transport model for ozone and related chemical tracers. 1. Model description,” J. Geophys. Res. D 103, 28,265–28,289 (1998). [CrossRef]
  47. D. A. Hauglustaine, G. P. Brasseur, S. Walters, P. J. Rasch, J.-F. Müller, L. K. Emmons, M. A. Carroll, “MOZART, a global chemical transport model or ozone and related chemical tracers. 2. Model results and evaluation,” J. Geophys. Res. D 103, 28,291–28,335 (1998). [CrossRef]
  48. S. Payan, Laboratoire de Physique Moléculaire et Applications, Paris, France, and J. Hadji-Lazaro, Service d’Aéronomie, Paris, France. (personal communication, 1998).
  49. A. M. Lubrano, C. Serio, S. A. Clough, H. Kobayashi, “Simultaneous inversion for temperature and water vapor from IMG radiances,” Geophys. Res. Lett. 27, 2533–2536 (2000). [CrossRef]
  50. F. Karcher, MétéoFrance, Toulouse, France (personal communication, 1998).
  51. S. Payan, Laboratoire de Physique Moléculaire et Applications, Paris, France (personal communication, 1998).
  52. C. Serio, Università di Basilicata, Potenza, Italy (personal communication, 1999).
  53. U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” IEEE Trans. Geosci. Remote Sens. 37, 1620–1632 (1999). [CrossRef]
  54. J. Hadji-Lazaro, C. Clerbaux, P. Couvert, P. Chazette, C. Boonne, “Cloud filter for CO retrieval from IMG infrared spectra using ECMWF temperatures and POLDER cloud data,” Geophys. Res. Lett. 28, 2397–2400 (2001). [CrossRef]
  55. J.-F. Lamarque, B. V. Khattatov, J. C. Gille, G. P. Brasseur, “Assimilation of Measurement of Air Pollution from Space (MAPS) CO in a three-dimensional model,” J. Geophys. Res. D 104, 26,209–26,218 (1999). [CrossRef]
  56. C. Clerbaux, J. Hadji-Lazaro, D. Hauglustaine, G. Mégie, B. Khattatov, J.-F. Lamarque, “Assimilation of carbon monoxide measured from satellite in a three-dimensional chemistry-transport model,” J. Geophys. Res. D 106, 15,385–15,394 (2001). [CrossRef]
  57. S. Ichizawa, K. Kondo, M. Suzuki, H. Shimoda, T. Ogawa, “Improvement of the instrument line shape of IMG,” in Infrared Spaceborne Remote Sensing IX, M. Strojnik, B. F. Andresen, eds., Proc. SPIE4486, 326–334 (2002).
  58. J. E. Harries, H. E. Brindley, P. J. Sagoo, R. J. Bantges, “Increases in greenhouse forcing inferred from outgoing longwave radiation spectra of the Earth in 1970 and 1997,” Nature 410, 355–357 (2001). [CrossRef] [PubMed]
  59. S. Turquety, J. Hadji-Lazaro, C. Clerbaux, “Retrieval of ozone from infrared IASI measurements,” in Remote Sensing of Clouds and the Atmosphere VI, K. Schaefer, O. Lado-Bordowsky, A. Comeron, M. R. Carleer, J. S. Fender, eds., Proc. SPIE4539, 106–115 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited