OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 33 — Nov. 20, 2002
  • pp: 7102–7113

Wavelength-dependent optical extinction of carbonaceous particles in atmospheric aerosols and interstellar dust

Michael Quinten, Uwe Kreibig, Thomas Henning, and Harald Mutschke  »View Author Affiliations


Applied Optics, Vol. 41, Issue 33, pp. 7102-7113 (2002)
http://dx.doi.org/10.1364/AO.41.007102


View Full Text Article

Enhanced HTML    Acrobat PDF (573 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical extinction spectra for particles of structurally disordered carbonaceous material (carbon black, soot) are discussed in terms of the effects of size and shape and the difference between coagulated and coalesced particles. For this purpose, the orientation-averaged specific extinction for several compact and open aggregates of spherical particles is calculated and compared with the specific extinction by homogeneous particles, i.e., volume-equivalent spheres and elongated spheroids. The extinction spectra are calculated for wavelengths from 0.2 to 1000 µm by use of the optical constants for the carbonaceous materials of Jäger et al. [Astron. Astrophys. 332, 291 (1998)] and Schnaiter et al. [Astrophys. J. 498, 486 (1998)]. Comparisons with the model case of particles composed of graphite and with measurements of diesel soot aerosols are made.

© 2002 Optical Society of America

OCIS Codes
(290.2200) Scattering : Extinction
(290.5850) Scattering : Scattering, particles
(300.6250) Spectroscopy : Spectroscopy, condensed matter

History
Original Manuscript: March 19, 2002
Revised Manuscript: August 9, 2002
Published: November 20, 2002

Citation
Michael Quinten, Uwe Kreibig, Thomas Henning, and Harald Mutschke, "Wavelength-dependent optical extinction of carbonaceous particles in atmospheric aerosols and interstellar dust," Appl. Opt. 41, 7102-7113 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-33-7102


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Th. Henning, F. Salama, “Carbon in the universe,” Science 282, 2204–2210 (1998). [CrossRef] [PubMed]
  2. M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, San Diego, Calif., 2000).
  3. R. Stognienko, Th. Henning, V. Ossenkopf, “Optical properties of coagulated particles,” Astron. Astrophys. 296, 797–809 (1995).
  4. T. P. Stecher, “Interstellar extinction in the ultraviolet,” Astrophys. J. 142, 1683–1684 (1965). [CrossRef]
  5. E. L. Fitzpatrick, D. Massa, “An analysis of the shapes of ultraviolet extinction curves. I. The 2175 Å bump,” Astrophys. J. 307, 286–294 (1986). [CrossRef]
  6. F. Rouleau, Th. Henning, R. Stognienko, “Constraints on the properties of the 2175 Å interstellar feature carrier,” Astron. Astrophys. 322, 633–645 (1997).
  7. M. Schnaiter, H. Mutschke, J. Dorschner, Th. Henning, F. Salama, “Matrix-isolated nanosized carbon grains as an analog for the 2175 nm feature carrier,” Astrophys. J. 498, 486–496 (1998). [CrossRef]
  8. C. Jäger, H. Mutschke, Th. Henning, “Optical properties of carbonaceous dust analogues,” Astron. Astrophys. 332, 291–299 (1998).
  9. B. T. Draine, “Tabulated optical properties of graphite and silicate grains,” Astrophys. J. Suppl. Ser. 57, 587–594 (1985). [CrossRef]
  10. V. G. Zubko, V. Mennella, L. Colangeli, E. Bussoletti, “Optical constants of cosmic carbon analogue grains. I. Simulation of clustering by a modified continuous distribution of ellipsoids,” Mon. Not. R. Astron. Soc. 282, 1321–1329 (1996). [CrossRef]
  11. E. A. Taft, H. R. Philipp, “Optical properties of graphite,” Phys. Rev. 138, A197–A202 (1965). [CrossRef]
  12. H. R. Philipp, “Infrared optical properties of graphite,” Phys. Rev. B 16, 2896–2900 (1977). [CrossRef]
  13. B. T. Draine, H. M. Lee, “Optical properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89–108 (1984). [CrossRef]
  14. A. B. Djurisic, E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85, 7404–7410 (1999). [CrossRef]
  15. Th. Henning, V. B. Il’in, N. A. Krivova, B. Michel, N. V. Voshchinnikov, “WWW—database of optical constants for astronomy,” Astron. Astrophys. Suppl. Ser. 136, 405–406 (1999), available at www.astro.uni-jena.de . [CrossRef]
  16. B. Michel, Th. Henning, C. Jäger, U. Kreibig, “Optical extinction by spherical carbonaceous particles,” Carbon 37, 391–400 (1999). [CrossRef]
  17. B. Michel, Th. Henning, R. Stognienko, F. Rouleau, “Extinction properties of dust grains: a new computational technique,” Astrophys. J. 468, 834–841 (1996). [CrossRef]
  18. J. Blum, G. Wurm, “Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates,” Icarus 143, 138–146 (2000). [CrossRef]
  19. J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000). [CrossRef] [PubMed]
  20. P. Chýlek, V. Ramaswamy, “Lower and upper bounds on extinction cross sections of arbitrarily shaped strongly absorbing or strongly reflecting nonspherical particles,” Appl. Opt. 21, 4339–4344 (1982). [CrossRef] [PubMed]
  21. B. L. Drolen, C. L. Tien, “Absorption and scattering of agglomerated soot particulates,” J. Quant. Spectrosc. Radiat. Transfer 37, 433–448 (1987). [CrossRef]
  22. J. C. Ku, K. H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992). [CrossRef]
  23. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
  24. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  25. W. Trinks, “Zur Vielfachstreuung an kleinen Kugeln,” Ann. Phys. (Leipzig) 22, 561–590 (1935).
  26. C. Liang, Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481–1495 (1967).
  27. F. Borghese, P. Denti, G. Toscano, O. I. Sindoni, “Electromagnetic scattering by a cluster of spheres,” Appl. Opt. 18, 116–120 (1979). [CrossRef] [PubMed]
  28. J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres,” Phys. Rev. B 25, 4204–4229 (1982). [CrossRef]
  29. K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. I. Linear chains,” Opt. Lett. 13, 90–92 (1988). [CrossRef]
  30. K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. II. Clusters of arbitrary configuration,” Opt. Lett. 13, 1063–1065 (1988). [CrossRef] [PubMed]
  31. A.-K. Hamid, I. R. Ciric, M. Hamid, “Multiple scattering by a linear array of conducting spheres,” Can. J. Phys. 68, 1157–1165 (1990). [CrossRef]
  32. A.-K. Hamid, I. R. Ciric, M. Hamid, “Electromagnetic scattering by an arbitrary configuration of dielectric spheres,” Can. J. Phys. 68, 1419–1428 (1990). [CrossRef]
  33. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991). [CrossRef]
  34. W. Lou, T. T. Charalampopoulos, “On the electromagnetic scattering and absorption of agglomerated small spherical particles,” J. Phys. D 27, 2258–2270 (1994). [CrossRef]
  35. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994). [CrossRef]
  36. Y. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573–4588 (1995). [CrossRef] [PubMed]
  37. F. Rouleau, “Electromagnetic scattering by compact clusters of spheres,” Astron. Astrophys. 310, 686–698 (1996).
  38. M. Quinten, U. Kreibig, “Optical extinction spectra of systems of small metal particles with aggregates,” in Optical Particle Sizing, G. Gouesbet, G. Grehan, eds. (Plenum, New York, 1988), pp. 247–258.
  39. M. Quinten, D. Schönauer, U. Kreibig, “Electronic excitations in many-particle systems: a quantitative analysis,” Z. Phys. D 12, 521–525 (1989). [CrossRef]
  40. T. Kahlau, M. Quinten, U. Kreibig, “Extinction and angle-resolved light scattering from aggregated metal clusters,” Appl. Phys. A 62, 19–27 (1996). [CrossRef]
  41. M. Quinten, A. Heilmann, A. Kiesow, “Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films,” Appl. Phys. B 68, 707–712 (1999). [CrossRef]
  42. A. N. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A 1, 573–580 (1999). [CrossRef]
  43. M. Quinten, U. Kreibig, “Absorption and elastic scattering of light by particle aggregates,” Appl. Opt. 32, 6173–6182 (1993). [CrossRef] [PubMed]
  44. M. Quinten, “Optical response of aggregates of clusters with different dielectric functions,” Appl. Phys. B 67, 101–106 (1998). [CrossRef]
  45. W. J. Wiscombe, “Mie scattering calculations: advances in techniques and fast vector-speed computer codes,” internal report (National Center for Atmospheric Research, Boulder, Colo., 1979).
  46. V. A. Markel, V. M. Shalaev, T. F. George, “Some theoretical and numerical approaches to the optics of fractal smoke,” in Optics of Nanostructured Materials, V. A. Markel, T. F. George, eds. (Wiley, New York, 2001), pp. 355–411.
  47. R. Gans, “Über die Form ultramikroskopischer Teilchen,” Ann. Phys. (Leipzig) 37, 881–900 (1912).
  48. N. V. Voshchinnikov, V. B. Il’in, Th. Henning, B. Michel, V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877–893 (2000). [CrossRef]
  49. B. T. Draine, S. Malhotra, “On graphite and the 2175 A extinction profile,” Astrophys. J. 414, 632–645 (1993). [CrossRef]
  50. C. Jäger, Th. Henning, R. Schlögl, O. Spillecke, “Spectral properties of carbon black,” J. Non-Cryst. Solids 258, 161–179 (1999). [CrossRef]
  51. J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations: the long-wavelength limit,” Phys. Rev. B 22, 4950–4959 (1980). [CrossRef]
  52. C. W. Bruce, T. F. Stromberg, K. P. Gurton, J. B. Mozer, “Trans-spectral absorption and scattering of electromagnetic radiation by diesel soot,” Appl. Opt. 30, 1537–1546 (1991). [CrossRef] [PubMed]
  53. D. C. Whittet, Dust in the Galactic Environment (Institute of Physics, Bristol, UK, 1992).
  54. P. E. Johnson, “Grain alignment in the galactic magnetic field,” Nature 295, 371–375 (1982). [CrossRef]
  55. O. Fischer, “Polarization by interstellar dust—modelling and interpretation of polarization maps,” Rev. Mod. Astron. 8, 103–124 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited