OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 33 — Nov. 20, 2002
  • pp: 7114–7134

Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics

Michael I. Mishchenko  »View Author Affiliations

Applied Optics, Vol. 41, Issue 33, pp. 7114-7134 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (342 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The concepts of statistical electromagnetics are used to derive the general radiative transfer equation (RTE) that describes multiple scattering of polarized light by sparse discrete random media consisting of arbitrarily shaped and arbitrarily oriented particles. The derivation starts with the volume integral and Lippmann-Schwinger equations for the electric field scattered by a fixed N-particle system and proceeds to the vector form of the Foldy-Lax equations and their approximate far-field version. I then assume that particle positions are completely random and derive the vector RTE by applying the Twersky approximation to the coherent electric field and the Twersky and ladder approximations to the coherency dyad of the diffuse field in the limit N → ∞. The concluding section discusses the physical meaning of the quantities that enter the general vector RTE and the assumptions made in its derivation.

© 2002 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles

Original Manuscript: April 1, 2002
Revised Manuscript: August 8, 2002
Published: November 20, 2002

Michael I. Mishchenko, "Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics," Appl. Opt. 41, 7114-7134 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Schuster, “Radiation through a foggy atmosphere,” Astrophys. J. 21, 1–22 (1905). [CrossRef]
  2. V. Kourganoff, Basic Methods in Transfer Problems (Clarendon, Oxford, 1952).
  3. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  4. V. V. Sobolev, Light Scattering in Planetary Atmospheres (Pergamon, London, 1974).
  5. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space. Sci. Rev. 16, 527–610 (1974). [CrossRef]
  6. H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980).
  7. J. W. Hovenier, C. V. M. van der Mee, “Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere,” Astron. Astrophys. 128, 1–16 (1983).
  8. J. Lenoble, ed., Radiative Transfer in Scattering and Absorbing Atmospheres (Deepak, Hampton, Va., 1985).
  9. A. K. Fung, Microwave Scattering and Emission Models and Their Applications (Artech House, Norwood, Mass., 1994).
  10. A. Z. Dolginov, Yu. N. Gnedin, N. A. Silant’ev, Propagation and Polarization of Radiation in Cosmic Media (Gordon Breach, Basel, Switzerland, 1995).
  11. E. G. Yanovitskij, Light Scattering in Inhomogeneous Atmospheres (Springer-Verlag, Berlin, 1997).
  12. G. E. Thomas, K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University, New York, 1999).
  13. K. N. Liou, An Introduction to Atmospheric Radiation (Academic, San Diego, Calif., 2002).
  14. J. W. Hovenier, C. V. M. van der Mee, H. Domke, Transfer of Polarized Light in Planetary Atmospheres (Kluwer Academic, Dordrecht, The Netherlands, to be published).
  15. A. G. Borovoy, “Method of iterations in multiple scattering: the transfer equation,” Izv. Vyssh. Uchebn. Zaved. Fiz., No. 6, 50–54 (1966).
  16. Yu. N. Barabanenkov, V. M. Finkel’berg, “Radiation transport equation for correlated scatterers,” Sov. Phys. JETP 26, 587–591 (1968).
  17. A. Z. Dolginov, Yu. N. Gnedin, N. A. Silant’ev, “Photon polarization and frequency change in multiple scattering,” J. Quant. Spectrosc. Radiat. Transfer 10, 707–754 (1970). [CrossRef]
  18. L. A. Apresyan, Yu. A. Kravtsov, Radiation Transfer (Gordon Breach, Basel, Switzerland, 1996).
  19. A. Lagendijk, B. A. van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep. 270, 143–215 (1996). [CrossRef]
  20. A. Ishimaru, Wave Propagation and Scattering in Random Media (Institute of Electrical and Electronics Engineers, New York, 1997).
  21. L. Tsang, J. A. Kong, Scattering of Electromagnetic Waves: Advanced Topics (Wiley, New York, 2001).
  22. V. P. Tishkovets, “Multiple scattering of light by a layer of discrete random medium: backscattering,” J. Quant. Spectrosc. Radiat. Transfer 72, 123–137 (2002). [CrossRef]
  23. M. I. Mishchenko, L. D. Travis, A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, New York, 2002).
  24. A. P. Prishivalko, V. A. Babenko, V. N. Kuzmin, Scattering and Absorption of Light by Inhomogeneous and Anisotropic Spherical Particles (Nauka i Tekhnika, Minsk, USSR, 1984), in Russian.
  25. L. L. Foldy, “The multiple scattering of waves,” Phys. Rev. 67, 107–119 (1945). [CrossRef]
  26. M. Lax, “Multiple scattering of waves,” Rev. Mod. Phys. 23, 287–310 (1951). [CrossRef]
  27. V. Twersky, “On propagation in random media of discrete scatterers,” Proc. Symp. Appl. Math. 16, 84–116 (1964).
  28. D. S. Saxon, “Lectures on the scattering of light,” Science Report No. 9 (Department of Meteorology, University of California, Los Angeles, Los Angeles, Calif., 1955).
  29. G. V. Rozenberg, “Stokes vector-parameter,” Usp. Fiz. Nauk. 56(1), 77–110 (1955). [CrossRef]
  30. M. I. Mishchenko, “Multiple scattering of light in anisotropic plane-parallel media,” Transp. Theory Stat. Phys. 19, 293–316 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited