OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 34 — Dec. 2, 2002
  • pp: 7245–7253

Heterostructure photonic crystals: theory and applications

Ahmed Sharkawy, Shouyuan Shi, and Dennis W. Prather  »View Author Affiliations

Applied Optics, Vol. 41, Issue 34, pp. 7245-7253 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (1265 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hybrid structure combining square and hexagonal photonic crystal lattices is presented. This structure, which we refer to as heterostructure, offers the ability to tailor, optimize, and match the band structure of different lattices. The availability of heterostructures in photonic crystals opens a broad range of possibilities for optical device development. In particular, heterostructure photonic crystals are well suited for the application of optical beam splitting (Y coupler) and combining. Numerical experiments performed by use of the finite-difference time-domain method are shown to illustrate the device implemented in both unistructure and heterostructure lattices.

© 2002 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3120) Integrated optics : Integrated optics devices
(230.1360) Optical devices : Beam splitters
(230.3120) Optical devices : Integrated optics devices
(250.5300) Optoelectronics : Photonic integrated circuits
(350.4600) Other areas of optics : Optical engineering

Original Manuscript: February 6, 2002
Revised Manuscript: September 12, 2002
Published: December 1, 2002

Ahmed Sharkawy, Shouyuan Shi, and Dennis W. Prather, "Heterostructure photonic crystals: theory and applications," Appl. Opt. 41, 7245-7253 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Prather, A. Sharkawy, S. Shouyuan, “Photonic crystals design and applications,” in Handbook of Nanoscience, Engineering, and Technology, S. E. Lyshevski, W. Goddard, D. Brenner, G. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002).
  2. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999). [CrossRef]
  3. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999). [CrossRef]
  4. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B. 58, 10096–10099 (1998). [CrossRef]
  5. M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120 sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000). [CrossRef]
  6. A. R. McGurn, “Photonic crystal circuits: a theory for two- and three-dimensional networks,” Phys. Rev. B 61, 13235–13249 (2000). [CrossRef]
  7. A. Adibi, Y. Xu, R. K. Lee, A. Yariv, A. Scherer, “Properties of the slab modes in photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1554–1564 (2000). [CrossRef]
  8. A. Adibi, R. K. Lee, Y. Xu, A. Yariv, A. Scherer, “Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000). [CrossRef]
  9. A. Mekis, J. D. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol. 19, 861–865 (2001). [CrossRef]
  10. S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000). [CrossRef]
  11. M. Loncar, T. Doll, J. Vuckovic, A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000). [CrossRef]
  12. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  13. T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000). [CrossRef]
  14. R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, F. P. H. V. Beckum, “Numerical studies of 2D photonic crystals: waveguides, coupling between waveguides and filters,” Opt. Quantum Electron. 32, 947–961 (2000). [CrossRef]
  15. T. Sondergaard, K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688–15696 (2000). [CrossRef]
  16. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999). [CrossRef]
  17. M. Bayindir, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000). [CrossRef]
  18. M. Bayindir, B. Temmelkuran, E. Ozbay, “Propagation of photons by hopping: a waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals,” Phys. Rev. B 61, 11855–11858 (2000). [CrossRef]
  19. M. Plihal, A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991). [CrossRef]
  20. K. S. Kunz, R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, Fla., 1993).
  21. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method.2nd ed. (Artech House, Boston, Mass., 2000).
  22. A. Sharkawy, S. Shouyuan, D. W. Prather, “Optical networks on a chip using photonic bandgap materials,” in Wave-Optical Systems Engineering, F. Wyrowski, ed., Proc. SPIE4436, 179–189 (2001).
  23. D. W. Prather, A. Sharkawy, S. Shouyuan, R. A. Soref, “Electro-optical 2×2 switching in a photonic bandgap waveguided coupler,” in WDM and Photonic Switching Devices for Network Applications III, R. T. Chen, J. C. Chon, eds., Proc. SPIE4653, 45–48 (2002).
  24. A. Sharkawy, S. Shouyuan, J. Murakowski, D. W. Prather, “Analysis and applications of photonic crystals coupled waveguide theory,” in Photonic Bandgap Materials and Devices, A. Adibi, A. Scherer, eds., Proc. SPIE4655, 356–370 (2002).
  25. A. Sharkawy, S. Shi, D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt. 40, 2247–2252 (2001). [CrossRef]
  26. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  27. M. Bayindir, E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B 62, 2247–2250 (2000). [CrossRef]
  28. G. Parker, M. Charlton, “Photonic crystals,” Phys. World 13, 29–34 (2000).
  29. N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998). [CrossRef]
  30. S. Romanov, H. Yates, M. Pemble, R. De la Rue, “Opal-based photonic crystal with double photonic bandgap structure,” J. Phys. Condens. Matter, 12, 8221–8229 (2000). [CrossRef]
  31. V. Karathanos, A. Modinos, N. Stefanou, “Planar defects in photonic crystals,” J. Phys. Condens. Matter 6, 6257–6264 (1994). [CrossRef]
  32. F. Qiao, C. Zhang, J. Wan, J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000). [CrossRef]
  33. S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, H. Miyazaki, K. Ohtaka, S. Yamaguchi, “Quantized state in a single quantum well structure of photonic crystals,” Phys. Rev. B 63, 1533161–1533164 (2001). [CrossRef]
  34. J. N. Winn, S. Fan, J. D. Joannopoulos, “Intraband transitions in photonic crystals,” Phys. Rev. B 59, 1551–1554 (1999). [CrossRef]
  35. C. Zhang, F. Qiao, J. Wan, J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87, 3174–3176 (2000). [CrossRef]
  36. L.-L. Lin, Z.-Y. Li, “Interface states in photonic crystals,” Phys. Rev. B 63, 333101–333104 (2001). [CrossRef]
  37. F. R. Mendieta, P. Halevi, “Surface electromagnetic waves in two-dimensional photonic crystals: effect of the position of the surface plane,” Phys. Rev. B 59, 15112–15120 (1999). [CrossRef]
  38. A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited