OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 34 — Dec. 2, 2002
  • pp: 7317–7324

Method to measure the optical properties of small volumes of diffusive media

Giovanni Zaccanti, Fabrizio Martelli, and Samuele Del Bianco  »View Author Affiliations


Applied Optics, Vol. 41, Issue 34, pp. 7317-7324 (2002)
http://dx.doi.org/10.1364/AO.41.007317


View Full Text Article

Enhanced HTML    Acrobat PDF (245 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The method consists of measuring the perturbation provoked by a small volume of the diffusive medium on light propagating through a medium of known optical properties. The absorption and the reduced scattering coefficients of the medium are retrieved from multidistance continuous-wave measurements of transmittance. The inversion procedure is based on the solution of the diffusion equation obtained with a perturbative approach. The method has been validated with Monte Carlo results. Examples of experimental results are reported.

© 2002 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.1990) Scattering : Diffusion
(290.7050) Scattering : Turbid media

History
Original Manuscript: April 16, 2002
Revised Manuscript: July 11, 2002
Published: December 1, 2002

Citation
Giovanni Zaccanti, Fabrizio Martelli, and Samuele Del Bianco, "Method to measure the optical properties of small volumes of diffusive media," Appl. Opt. 41, 7317-7324 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-34-7317


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992). [CrossRef] [PubMed]
  2. F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, G. Zaccanti, “Accuracy of the diffusion equation to describe photon migration through an infinite medium: numerical and experimental investigation,” Phys. Med. Biol. 45, 1359–1373 (2000). [CrossRef] [PubMed]
  3. A. Kienle, M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997). [CrossRef]
  4. J. L. Karagiannes, Z. Zhang, B. Grossweiner, L. I. Grossweiner, “Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms,” Appl. Opt. 28, 2311–2317 (1989). [CrossRef] [PubMed]
  5. S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993). [CrossRef] [PubMed]
  6. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990). [CrossRef] [PubMed]
  7. A. Vogel, C. Dlugos, R. Nuffer, R. Birngruber, “Optical properties of human sclera, and their consequences for transscleral laser applications,” Lasers Surg. Med. 11, 331–340 (1991). [CrossRef] [PubMed]
  8. T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 3, 342–355 (1996). [CrossRef]
  9. O. Coquoz, L. O. Svaasand, B. J. Tromberg, “Optical property measurements of turbid media in a small-volume cuvette with frequency-domain photon migration,” Appl. Opt. 40, 6281–6291 (2001). [CrossRef]
  10. S. Carraresi, T. S. M. Shatir, F. Martelli, G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt. 40, 4622–4632 (2001). [CrossRef]
  11. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1996), Vol. 1.
  12. A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, G. Zaccanti, “Monte Carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt. 37, 7392–7400 (1998). [CrossRef]
  13. G. Zaccanti, L. Alianelli, C. Blumetti, S. Carraresi, “Method for measuring the mean time of flight spent by photons inside a volume element of a highly diffusing medium,” Opt. Lett. 24, 1290–1292 (1999). [CrossRef]
  14. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  15. R. J. Hunter, M. S. Patterson, T. J. Farrel, J. E. Hayward, “Hemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of the top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002). [CrossRef] [PubMed]
  16. A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998). [CrossRef]
  17. V. Chernomordik, D. Hattery, A. H. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnomalies embedded within tissuelike phantoms,” Opt. Lett. 25, 951–953 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited