OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 34 — Dec. 2, 2002
  • pp: 7325–7333

Adaptive Calibration for Object Localization in Turbid Media With Interfering Diffuse Photon Density Waves

Yu Chen, Chenpeng Mu, Xavier Intes, and Britton Chance  »View Author Affiliations

Applied Optics, Vol. 41, Issue 34, pp. 7325-7333 (2002)

View Full Text Article

Acrobat PDF (741 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The amplitude cancellation method that uses dual out-of-phase sources (a phased array system) can sensitively detect and locate small objects in turbid media. The balance of these two sources is crucial to the system’s detection sensitivity and accuracy. We describe a convenient method with which to adaptively calibrate the amplitudes of the two sources at each scanning position by use of low-frequency modulation of the intensity of the in-phase and the antiphase sources. We achieve accurate localization ability of the phased array system by accounting for the influence of asymmetrical boundaries and the heterogeneous background absorption. Experimental data on human breast phantoms demonstrate that localization accuracy within several millimeters has been accomplished through this method.

© 2002 Optical Society of America

OCIS Codes
(110.5100) Imaging systems : Phased-array imaging systems
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.5270) Medical optics and biotechnology : Photon density waves
(170.5280) Medical optics and biotechnology : Photon migration
(170.7050) Medical optics and biotechnology : Turbid media

Yu Chen, Chenpeng Mu, Xavier Intes, and Britton Chance, "Adaptive Calibration for Object Localization in Turbid Media With Interfering Diffuse Photon Density Waves," Appl. Opt. 41, 7325-7333 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Yodh, and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995).
  2. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time-resolved and frequency-resolved optical-spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
  3. T. O. McBride, B. W. Pogue, E. D. Gerety, S. P. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
  4. C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19, 27–38 (1999).
  5. V. Quaresima, S. J. Matcher, and M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
  6. M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. Schlag, and M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
  7. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
  8. C. S. Robertson, S. P. Gopinath, and B. Chance, “Use of near-infrared spectroscopy to identify traumatic intracranial hematomas,” J. Biomed. Opt. 2, 31–41 (1997).
  9. C. Casavola, L. A. Paunescu, S. Fantini, M. A. Franceschini, P. M. Lugara, and E. Gratton, “Application of near-infrared tissue oxymetry to the diagnosis of peripheral vascular disease,” Clin. Hemorheol. Microcirc. 21, 389–393 (1999).
  10. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
  11. B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
  12. B. Chance, K. Kang, L. He, H. Liu, and S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
  13. A. Knuttel, J. M. Schmitt, R. Barnes, and J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
  14. C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, and S. Svanberg, “Reconstruction of diffuse photon density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
  15. B. Chance, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, noninvasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-2–10–411.
  16. Y. Chen, S. Zhou, C. Xie, S. Nioka, M. Delivoria-Papadopoulos, E. Anday, and B. Chance, “Preliminary evaluation of dual wavelength phased array imaging on neonatal brain function,” J. Biomed. Opt. 5, 194–200 (2000).
  17. S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, and B. Chance, “Phased-array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue, B. Chance and R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2979, 98–106 (1997).
  18. S. P. Morgan and K. Y. Yong, “Controlling the phase response of a diffusive wave phased array system,” Opt. Express 7, 540–546 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7–13–540.
  19. Y. Chen, C. P. Mu, X. Intes, and B. Chance, “Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source,” Opt. Express 9, 212–224 (2001), http://www.opticsexpress.org/abstract.cfm?URI-OPEX-9–4-212.
  20. M. G. Erickson, J. S. Reynolds, and K. J. Webb, “Comparison of sensitivity for single-source and dual-interfering-source configurations in optical diffusion imaging,” J. Opt. Soc. Am. A 14, 3083–3092 (1997).
  21. D. G. Papaioannou, G. W. Hooft, S. B. Colak, and J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305–310 (1996).
  22. K. Kang, D. F. Bruley, and B. Chance, “Feasibility study of a single- and multiple-source near-infrared phase-modulation device for characterizing biological systems,” Biomed. Instrum. Technol. 31, 373–389 (1997).
  23. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
  24. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  25. J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
  26. J. M. Schmitt, A. Knuttel, and J. R. Knutson, “Interference of diffuse light waves,” J. Opt. Soc. Am. A 9, 1832–1843 (1992).
  27. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
  28. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
  29. K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, and B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
  30. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
  31. K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
  32. S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
  33. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60–61, 281–286 (1994).
  34. X. Intes, B. Chance, M. J. Holboke, and A. G. Yodh, “Interfering diffusive photon-density waves with an absorbing-fluorescent inhomogeneity,” Opt. Express 8, 223–231 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8–3-223.
  35. X. Intes, Y. Chen, X. Li, and B. Chance, “Detection limit enhancement of fluorescent heterogeneities in turbid media by dual interfering excitation,” Appl. Opt. 41, 3999–4007 (2002).
  36. X. Intes, V. Ntziachristos, A. G. Yodh, and B. Chance, “Analytical model for dual-interfering sources diffuse optical tomography,” Opt. Express 10, 2–14 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10–1-2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited