OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 36 — Dec. 20, 2002
  • pp: 7561–7568

Investigation of thermal and optical properties of distributed Bragg reflectors by photothermal deflection spectroscopy

Faycel Saadallah, Noureddine Yacoubi, Frédéric Genty, and Claude Alibert  »View Author Affiliations

Applied Optics, Vol. 41, Issue 36, pp. 7561-7568 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (162 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the study of thermal and optical properties of 15.5 pairs of GaAlAsSb/AlAsSb layers deposited upon a GaSb substrate by photothermal deflection spectroscopy. This stacking of layers constitutes a distributed Bragg mirror.

© 2002 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3410) Lasers and laser optics : Laser resonators
(300.6470) Spectroscopy : Spectroscopy, semiconductors

Original Manuscript: April 2, 2002
Revised Manuscript: July 15, 2002
Published: December 20, 2002

Faycel Saadallah, Noureddine Yacoubi, Frédéric Genty, and Claude Alibert, "Investigation of thermal and optical properties of distributed Bragg reflectors by photothermal deflection spectroscopy," Appl. Opt. 41, 7561-7568 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. L. Felix, W. W. Bewley, I. Vurgaftman, J. R. Meyer, L. Goldberg, D. H. Chow, E. Selvig, “Midinfrared vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 71, 3483–3485 (1997). [CrossRef]
  2. I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, “Mid-IR vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 34, 147–156 (1998). [CrossRef]
  3. J. Koeth, R. Dietrich, A. Forchel, “GaSb vertical-cavity surface-emitting lasers for the 1.5 µm rang,” Appl. Phys. Lett. 72, 1638–1640 (1999). [CrossRef]
  4. A. N. Baranov, N. Bertru, Y. Cuminal, G. Goissier, Y. Rouillard, J. C. Nicolas, P. Grech, A. F. Joullie, C. L. Alibert, “Mid-infrared GaSb-InAs-based multiple quantum well lasers,” in In-Plane Seminconductor Lasers: from Ultraviolet to Mid-Infrared II, H. K. Choi, P. S. Lory, eds., Proc. SPIE3284, 247–257 (1998).
  5. J. Geske, V. Jayaraman, T. Goodwin, M. Culick, M. MacDougal, T. Goodnough, D. Welch, J. E. Bowers, “2.5-Gb/s transmission over 50 km with a 1.3-µm vertical-cavity surface-emitting laser,” IEEE Photon Technol. Lett. 12, 1707–1709 (2000). [CrossRef]
  6. O. Blum, I. J. Fritz, L. R. Dawson, T. J. Drummond, “Digital alloy AlAsSb/AlGaAsSb distributed Bragg reflectors lattice matched to InP for 1.3–1.55 µm wavelength range,” Electron. Lett. 31, 1247–1248 (1995). [CrossRef]
  7. A. Khol, J. C. Harmand, J. L. Oudar, E. V. K. Rao, R. Kuszelewicz, E. L. Deplon, “AlGaAsSb/AlAsSb microcavity designed for 1.55 µm and grown by molecular beam epitaxy,” Electron. Lett. 33, 708–710 (1997). [CrossRef]
  8. F. Genty, G. Almuneau, N. Bertru, L. Chusseau, P. Grech, D. Cot, J. Jacquet, “Molecular beam epitaxy growth and characterizations of AlGaAsSb/AlAsSb Bragg reflectors on InP,” J. Cryst. Growth 183, 15–22 (1998). [CrossRef]
  9. G. Almuneau, E. Hall, S. Nakagawa, J. K. Kim, D. Lofgreen, C. Luo, D. R. Clarke, J. H. English, L. A. Coldren, “Molecular beam epitaxial growth of monolithic 1.55 µm vertical cavity surface emitting lasers with AlGaAsSb/AlAsSb Bragg mirrors,” J. Vac. Sci. Technol. B 18, 1601–1604 (2000). [CrossRef]
  10. S. Callard, A. Gagnaire, M. P. Besland, J. Joseph, “Adapted wavelength method from in situ ellipsometry,” Thin Solid Films 479, 313–314 (1998).
  11. A. C. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the mirage effect,” Appl. Phys. Lett. 36, 130–132 (1980). [CrossRef]
  12. J. C. Murphy, L. C. Aamodt, “Photothermal spectroscopy using optical beam probing: mirage effect,” J. Appl. Phys. 9, 4580–4588 (1980). [CrossRef]
  13. N. Yacoubi, B. Girault, J. Fesquet, “Determination of absorption coefficient and thermal conductivity of GaAlAs/GaAs heterostructure using a photothermal method,” Appl. Opt. 25, 4622–4625 (1986). [CrossRef]
  14. N. Yacoubi, A. Hafaiedh, A. Joullié, “Determination of the optical and thermal properties of semiconductors with the photothermal method,” Appl. Opt. 33, 7171–7174 (1994). [CrossRef] [PubMed]
  15. N. Yacoubi, C. Alibert, “Determination of very thin semiconductor layer thickness by a photothermal method,” J. Appl. Phys. 69, 8310–8312 (1991). [CrossRef]
  16. F. Saadallah, N. Yacoubi, A. Hafaiedh, “Determination of thermal properties of semiconductors using the photothermal method in the many thin layer cases,” Opt. Mater. 6, 35–39 (1996). [CrossRef]
  17. S. Adachi, “Lattice thermal resistivity of III–V compound alloys,” J. Appl. Phys. 54, 1844–1848 (1983). [CrossRef]
  18. C. Alibert, M. Skouri, A. Joullié, M. Benoua, S. Sadiq, “Refractive indices of AlSb and GaSb-lattice-matched AlxGa1–xAsySb1–y in the transparent wavelength region,” J. Appl. Phys. 69, 3208–3211 (1991). [CrossRef]
  19. M. Muñoz, K. Wei, F. H. Pollak, J. L. Freeouf, G. W. Charache, “Spectral ellipsometry of GaSb: experiment and modeling,” Phys. Rev. B 60, 8105–8110 (1999). [CrossRef]
  20. M. Guden, J. Piprek, “Material parameters of quaternary III–V semiconductors for multilayer mirrors at 1.55 µm wavelength,” Modell. Simul. Mater. Sci. Eng. 4, 349–357 (1996). [CrossRef]
  21. R. Ferrini, M. Patrini, S. Franchi, “Optical functions from 0.02 to 6 eV of AlxGa1–xSb/GaSb epitaxial layers,” J. Appl. Phys. 84, 4517–4524 (1998). [CrossRef]
  22. J. Tauc, R. Grigorovici, A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966). [CrossRef]
  23. S. Adachi, “Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb:key properties for a variety of the 2–4-µm optoelectronic device applications,” J. Appl. Phys. 61, 4869–4876 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited