OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 36 — Dec. 20, 2002
  • pp: 7573–7582

Quasi-continuous-wave birefringence-compensated single- and double-rod Nd:YAG lasers

Martin Ostermeyer, Guido Klemz, Philipp Kubina, and Ralf Menzel  »View Author Affiliations

Applied Optics, Vol. 41, Issue 36, pp. 7573-7582 (2002)

View Full Text Article

Acrobat PDF (1211 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Compensation of thermally induced birefringence directed toward compensation of depolarization and bifocusing in laser rods is treated with simple beam transfer matrices. When we apply a 90-deg polarization-rotating element to a resonator, the radial and the tangential eigensolutions of the resonator change significantly. The effect of this alteration on the resonator’s stability is investigated in detail. The outcome is used to design a single- and double-rod resonator resulting in 53 W with an M2 ≈ 1.5 and 182 W of output power with an M2 ≈ 1.2, respectively.

© 2002 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.6810) Lasers and laser optics : Thermal effects

Martin Ostermeyer, Guido Klemz, Philipp Kubina, and Ralf Menzel, "Quasi-continuous-wave birefringence-compensated single- and double-rod Nd:YAG lasers," Appl. Opt. 41, 7573-7582 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. Auyeng, D. Fekete, D. M. Pepper, and A. Yariv, “Theoretical and experimental investigation of the modes of optical resonators with phase-conjugate mirrors,” IEEE J. Quantum Electron. QE-15, 1180–1188 (1979).
  2. M. D. Skeldon and R. W. Boyd, “Transverse-mode structure of a phase-conjugate oscillator based on Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25, 588–594 (1989).
  3. A. Drobnik and L. Wolf, “Influence of self-focusing on the operation of a neodymium glass laser,” Sov. J. Quantum Electron. 8, 274–275 (1978).
  4. M. Ostermeyer, A. Heuer, and R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
  5. S. Makki and J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085 (1999).
  6. J. D. Foster and L. M. Osterink, “Thermal effects in Nd:YAG lasers,” J. Appl. Phys. 41, 3656–3663 (1970).
  7. J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, “The slab geometry laser Part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
  8. A. Giesen, U. Brauch, I. Johannsen, M. Karszewski, C. Stewen, and A. Voss, “High-power near diffraction-limited and single-frequency operation of Yb:YAG thin disc laser,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series(Optical Society of America, Washington, D.C., 1996), pp. 11–13.
  9. G. A. Massey, “Criterion for selection of cw-laser host materials to increase available powers in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
  10. M. Ostermeyer and R. Menzel, “Single rod efficient Nd:YAG and Nd:YALO-lasers with average output powers of 46 and 47 W in diffraction limited beams with M2 < 1.2 and 100 W with M2 < 3.7,” Opt. Commun. 160, 251–254 (1999).
  11. W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG Laser,” Appl. Phys. Lett. 18, 3–4 (1971).
  12. S. Seidel, A. Schirrmacher, G. Mann, Nursianni, T. Riesbeck, “Optimized resonators for high-average-power, high-brightness Nd:YAG lasers with birefringence compensation,” in Laser Resonators, A. V. Kudryashov and P. Talarneau, eds., Proc. SPIE 3267, 214–225 (1998).
  13. G. Giuliani and P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
  14. V. M. Gelikonov, D. D. Gusovskii, V. I. Leonov, and M. A. Novikov, “Birefringence compensation in single mode optical fibers,” Sov. Tech. Phys. Lett. 13, 322–323 (1987).
  15. M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
  16. N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, and G. Pasmanik. “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991).
  17. Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser rods,” Opt. Quantum Electron. 28, 57–69 (1996).
  18. J. Sherman, “Thermal compensation of a cw-pumped Nd:YAG laser,” Appl. Opt. 37, 7789–7796 (1998).
  19. C. A. Denman and S. I. Libby, “Birefringence compensation using a single Nd:YAG rod,” in Advanced Solid-State Lasers, M. M. Fejer, N. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series(Optical Society of America, Washington, D.C., 1999), pp. 608–612.
  20. W. A. Clarkson, N. S. Felgate, and D. C. Hanna, “Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett. 24, 820–822 (1999).
  21. R. Fluck, M. R. Hermann, and L. A. Hackel, “Birefringence compensation in single solid-state rods,” Appl. Physl. Lett. 76, 1513–1515 (2000).
  22. R. Hua, S. Wada, and H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolarization loss from thermally induced birefringence in Nd:YAG lasers,” Opt. Commun. 175, 189–200 (2000).
  23. K. S. Lai, R. Wu, and P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped with randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices, and Applications, J. W. Pierce, ed., Proc. SPIE 3928, 43–51 (2000).
  24. E. Khazanov, A. Potemkin, and E. Katin, “Compensation for birefringence in active elements of solid-state lasers: novel method,” J. Opt. Soc. Am. B 19, 667–671 (2002).
  25. For example, for a typical rod length of 100 mm h = 1/2n = 28 mm at 500-W pump power for a rod with 6 diopters/(kW pump power) a focal length of the thermal lens of f = 330 mm results, hence f2 ≅ (10*h)2 ≫ h2).
  26. W. Koechner and D. Rice, “Birefringence of Nd:YAG laser rods as a function of growth direction,” J. Opt. Soc. Am. 61, 758–766 (1971).
  27. H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
  28. S. Konno, S. Fujikawa, and K. Yasui, “80 W cw TEM00 1064 nm beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser,” Appl. Phys. Lett. 70, 2650–2651 (1997).
  29. Y. Hirano, Y. Koyata, S. Yamamoto, K. Kasahara, and T. Tajime, “208-W TEM00 operation of a diode-pumped Nd:YAG rod laser,” Opt. Lett. 24, 679–681 (1999).
  30. E. A. Khazanov, “A new Faraday rotator for high average output power lasers,” Quantum Electron. 31, 351–356 (2001).
  31. E. Khazanov, A. Anastasiyev, N. Andreev, A. Voytovich, and O. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited