OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 36 — Dec. 20, 2002
  • pp: 7637–7643

Brewster’s angle attenuator for terahertz pulses

Amelia G. VanEngen Spivey and Steven T. Cundiff  »View Author Affiliations

Applied Optics, Vol. 41, Issue 36, pp. 7637-7643 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (282 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A variable attenuator for terahertz (THz) pulses is developed on the basis of the change in reflectivity of lithium niobate wafers with incident angle in a Brewster configuration. We can vary the THz field transmission from 22% to 54%, a change of a factor of 2.5, while preserving the shape of the THz pulse spectrum. Changes in the THz spectrum are shown to be much smaller when the Brewster attenuator is used than when either the near-infrared pump power or the bias voltage on a THz photoconductive antenna is varied. The Brewster attenuator should prove especially useful for varying THz field strength in nonlinear optical studies that use broadband THz pulses.

© 2002 Optical Society of America

OCIS Codes
(160.3730) Materials : Lithium niobate
(230.5440) Optical devices : Polarization-selective devices
(260.3090) Physical optics : Infrared, far
(320.0320) Ultrafast optics : Ultrafast optics

Original Manuscript: April 3, 2002
Revised Manuscript: August 27, 2002
Published: December 20, 2002

Amelia G. VanEngen Spivey and Steven T. Cundiff, "Brewster’s angle attenuator for terahertz pulses," Appl. Opt. 41, 7637-7643 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Winnerl, E. Schomburg, S. Brandl, O. Kus, K. F. Renk, M. C. Wanke, S. J. Allen, A. A. Ignatov, V. Ustinov, A. Zhukov, P. S. Kop’ev, “Frequency doubling and tripling of terahertz radiation in a GaAs/AlAs superlattice due to frequency modulation of Bloch oscillations,” Appl. Phys. Lett. 77, 1259–1261 (2000). [CrossRef]
  2. F. Keilmann, “Nonlinear far-infrared spectroscopy of solids,” Infrared Phys. 31, 373–380 (1991). [CrossRef]
  3. Ch. Fattinger, D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989). [CrossRef]
  4. M. van Exter, Ch. Fattinger, D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989). [CrossRef]
  5. D. Grischkowsky, “Nonlinear generation of sub-psec pulses of THz electromagnetic radiation by optoelectronics—applications to time-domain spectroscopy,” in Frontiers in Nonlinear Optics, H. Walther, N. Koroteev, M. O. Scully, eds. (Institute of Physics, Bristol, UK, 1993), pp. 196–227.
  6. C. Raman, C. W. S. Conover, C. I. Sukenik, P. H. Bucksbaum, “Ionization of Rydberg wave packets by subpicosecond, half-cycle electromagnetic pulses,” Phys. Rev. Lett. 76, 2436–2439 (1996). [CrossRef] [PubMed]
  7. D. M. Mittleman, R. H. Jacobsen, M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996). [CrossRef]
  8. V. K. Thormsølle, R. D. Averitt, M. P. Maley, L. N. Bulaevskii, C. Helm, A. J. Taylor, “C-axis Josephson plasma resonance observed in Tl2Ba2CaCu2O8 superconducting thin films by use of terahertz time-domain spectroscopy,” Opt. Lett. 26, 1292–1294 (2001). [CrossRef]
  9. R. A. Cheville, D. Grischkowsky, “Observation of pure rotational absorption spectra in the ν2 band of hot H2O in flames,” Opt. Lett. 23, 531–533 (1998). [CrossRef]
  10. Z. Jiang, M. Li, X.-C. Zhang, “Dielectric constant measurement of thin films by differential time-domain spectroscopy,” Appl. Phys. Lett. 76, 3221–3223 (2000). [CrossRef]
  11. M. C. Beard, G. M. Turner, C. A. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B. 62, 15764–15777 (2000). [CrossRef]
  12. S. Nashima, O. Morikawa, K. Takata, M. Hangyo, “Temperature dependence of optical and electronic properties of moderately doped silicon at terahertz frequencies,” J. Appl. Phys. 90, 837–842 (2001). [CrossRef]
  13. D. J. Cook, J. X. Chen, E. A. Morlino, R. M. Hochstrasser, “Terahertz-field-induced second-harmonic generation measurements of liquid dynamics,” Chem. Phys. Lett. 309, 221–228 (1999). [CrossRef]
  14. E. Budiarto, J. Margolies, S. Jeong, J. Son, J. Bokor, “High-intensity terahertz pulses at 1-kHz repetition rate,” IEEE J. Quantum Electron. 32, 1830–1846 (1996). [CrossRef]
  15. J. N. Heyman, K. Craig, B. Galdrikian, M. S. Sherwin, K. Campman, P. F. Hopkins, S. Fafard, A. C. Gossard, “Resonant harmonic generation and dynamic screening in a double quantum well,” Phys. Rev. Lett. 72, 2183–2186 (1994). [CrossRef] [PubMed]
  16. D. You, R. R. Jones, P. H. Bucksbaum, D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett. 18, 290–292 (1993). [CrossRef] [PubMed]
  17. K. Sakai, L. Genzel, “Far infrared metal mesh filters and Fabry–Perot interferometry,” in Reviews of Infrared and Millimeter Waves, K. J. Button, ed. (Plenum, New York, 1983), Vol. 1, pp. 155–247.
  18. F. Keilmann, “Precision broadband far-infrared attenuator,” in Far-Infrared Science and Technology, J. R. Izatt, ed., Proc. SPIE666, 213–218 (1986).
  19. I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76, 2821–2823 (2000). [CrossRef]
  20. P. R. Smith, D. H. Auston, M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988). [CrossRef]
  21. M. Tani, S. Matsuura, K. Sakai, S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997). [CrossRef]
  22. P. Uhd Jepsen, R. H. Jacobsen, S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424–2436 (1996). [CrossRef]
  23. J. E. Pedersen, V. G. Lyssenko, J. M. Hvam, P. Uhd Jepsen, S. R. Keiding, C. B. Sørensen, P. E. Lindelof, “Ultrafast local field dynamics in photoconductive THz antennas,” Appl. Phys. Lett. 62, 1265–1267 (1993). [CrossRef]
  24. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  25. J. P. Taché, “Intracavity skew-Brewster-angle plates as a calibrated attenuator for gas lasers,” J. Phys. D 19, 943–956 (1986). [CrossRef]
  26. H. J. Bakker, S. Hunsche, H. Kurz, “Investigation of anharmonic lattice vibrations with coherent phonon polaritons,” Phys. Rev. B 50, 914–920 (1994). [CrossRef]
  27. M. Schall, H. Helm, S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millim Waves 20, 595–604 (1999). [CrossRef]
  28. J. Shikata, K. Kawase, K. Karino, T. Taniuchi, H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microwave Theory Tech. 48, 653–661 (2000). [CrossRef]
  29. E. D. Palik, “Lithium niobate (LiNbO3),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 695–702.
  30. A. M. Prokhorov, Y. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Institute of Physics, Bristol, UK, 1990).
  31. P. W. Milonni, J. H. Eberly, Lasers (Wiley, New York, 1988).
  32. E. D. Palik, “Gallium arsenide (GaAs),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 429–443.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited