OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 36 — Dec. 20, 2002
  • pp: 7644–7649

Optimal design method of a low-loss broadband Y branch with a multimode waveguide section

Qian Wang, Jun Lu, and Sailing He  »View Author Affiliations


Applied Optics, Vol. 41, Issue 36, pp. 7644-7649 (2002)
http://dx.doi.org/10.1364/AO.41.007644


View Full Text Article

Acrobat PDF (100 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optimal design method for a low-loss broadband silica-on-silicon Y branch is considered. A multimode waveguide section, which was used earlier to reduce the excess loss, is designed optimally when the light distribution at the end of the multimode waveguide section is matched to the profile of the symmetric supermode for the structure of the two branching waveguides. An optimization method that combines the genetic algorithm and a gradient-based search method is used to obtain the optimal geometrical parameters for the multimode waveguide section as well as the widths for the input and branching waveguides.

© 2002 Optical Society of America

OCIS Codes
(230.1360) Optical devices : Beam splitters
(230.3120) Optical devices : Integrated optics devices
(230.7370) Optical devices : Waveguides

Citation
Qian Wang, Jun Lu, and Sailing He, "Optimal design method of a low-loss broadband Y branch with a multimode waveguide section," Appl. Opt. 41, 7644-7649 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-36-7644


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. K. Pant, R. D. Coalson, M. I. Hernandez, and J. Campos-Martínez, “Optimal control theory for optical waveguide design: application to Y-branch structures,” Appl. Opt. 38, 3917–3923 (1999).
  2. C. Chaudhari, D. S. Patil, and D. K. Gautam, “A new technique for the reduction of the power loss in the Y-branch optical power splitter,” Opt. Commun. 193, 121–125 (2001).
  3. J. M. Hsu and C. T. Lee, “Design of microprism-type symmetric Y-junction waveguides with the full phase compensation method,” Appl. Opt. 38, 3234–3238 (1999).
  4. Z. Weissman, E. Marom, and A. A. Hardy, “Novel passive multibranch power splitters for integrated optics,” Appl. Opt. 29, 4426–4428 (1990).
  5. O. Hanaizumi, M. Miyagi, and S. Kawakami, “Low radiation loss Y-junctions in planar dielectric optical waveguides,” Opt. Commun. 51, 236–238 (1984).
  6. T. Yabu, M. Geshiro, and S. Sawa, “New design method for low-loss Y-branch waveguides,” J. Lightwave Technol. 19, 1376–1384 (2001).
  7. M. H. Hu, J. Z. Huang, R. Scarmozzino, M. Levy, and R. M. Jr. Osgood, “A low-loss and compact waveguide Y-branch using refractive-index tapering,” IEEE Photon. Technol. Lett. 9, 203–205 (1997).
  8. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
  9. Y. Chung, R. Spickermann, D. B. Young, and N. Dagli, IEEE Photon. Technol. Lett. 4, 1009–1011 (1992).
  10. L. B. Soldano, M. Bouda, M. K. Smit, and B. H. Verbeek, “New small-size single-mode optical power splitter based on multi-mode interference,” in Proceedings of the 18th European Conference on Optical Communication (Technische Universität Berlin, Berlin, Germany, 1992), pp. 456–468 (1992).
  11. M. A. Fardad and M. Fallahi, “Sol-gel multimode interference power splitters,” IEEE Photon. Technol. Lett. 11, 697–699 (1999).
  12. P. A. Besse, M. Bachhamn, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12, 1004–1009 (1994).
  13. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, Mass., 1989).
  14. R. L. Haupt, “An introduction to genetic algorithms for electromagnetics,” IEEE Antennas Propaga. Mag. 37, 7–15 (1995).
  15. D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to electromagnetics: a review,” IEEE Trans. Antennas Propaga. 45, 343–353 (1997).
  16. K. H. Lee and W. Steenaart, “Analysis of N × N passive optical star coupler based on the normal modes of N input waveguides,” J. Lightwave Technol. 10, 1800–1806 (1992).
  17. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
  18. G. R. Hadley, “Multistep method for wide-angle beam propagation,” Opt. Lett. 17, 1743–1745 (1992).
  19. C. Vassallo and F. Collino, “Highly efficient absorbing boundary conditions for the beam propagation method,” J. Lightwave Technol. 14, 1570–1577 (1996).
  20. F. Ladouceur and J. D. Love, Silica-Based Buried Channel Waveguide and Devices (Chapman & Hall, London, 1996).
  21. H. Rao, R. Scarmozzino, and R. M. Osgood, “A bidirectional beam propagation method for multiple dielectric interfaces,” IEEE Photon. Technol. Lett. 11, 830–832 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited