OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 36 — Dec. 20, 2002
  • pp: 7650–7656

Organic microcavity light-emitting diodes with metal mirrors: dependence of the emission wavelength on the viewing angle

Aleksandra B. Djurišić and Aleksandar D. Rakić  »View Author Affiliations


Applied Optics, Vol. 41, Issue 36, pp. 7650-7656 (2002)
http://dx.doi.org/10.1364/AO.41.007650


View Full Text Article

Enhanced HTML    Acrobat PDF (164 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Organic microcavity light-emitting diodes typically exhibit a blueshift of the emitting wavelength with increasing viewing angle. We have modeled the shift of the resonance wavelength for several metal mirrors. Eight metals (Al, Ag, Cr, Ti, Au, Ni, Pt, and Cu) have been considered as top or bottom mirrors, depending on their work functions. The model fully takes into account the dependence of the phase change that occurs on reflection on angle and wavelength for both s and p polarization, as well as on dispersion in the organic layers. Different contributions to the emission wavelength shift are discussed. The influence of the thickness of the bottom mirror and of the choice and thickness of the organic materials inside the cavity has been investigated. Based on the results obtained, guidelines for a choice of materials to reduce blueshift are given.

© 2002 Optical Society of America

OCIS Codes
(160.4890) Materials : Organic materials
(230.3670) Optical devices : Light-emitting diodes
(230.3990) Optical devices : Micro-optical devices

History
Original Manuscript: June 26, 2002
Revised Manuscript: June 26, 2002
Published: December 20, 2002

Citation
Aleksandra B. Djurišić and Aleksandar D. Rakić, "Organic microcavity light-emitting diodes with metal mirrors: dependence of the emission wavelength on the viewing angle," Appl. Opt. 41, 7650-7656 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-36-7650


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Zhang, Y. Ma, M. Xu, K. Wu, C. Huang, Y. Zhao, D. Zhuo, L. Yin, X. Zhao, “Planar organic microcavity of Eu-chelate film with metal mirrors,” Solid State Commun. 104, 593–596 (1997). [CrossRef]
  2. A. Dodabalapur, L. J. Rothberg, T. M. Miller, “Color variation with electroluminescent organic semiconductors in multimode resonant cavities,” Appl. Phys. Lett. 65, 2308–2310 (1994). [CrossRef]
  3. S. Tokito, K. Noda, Y. Taga, “Strongly directed single mode emission from organic electroluminescent diode with a microcavity,” Appl. Phys. Lett. 68, 2633–2635 (1996). [CrossRef]
  4. X. Y. Liu, L. X. Wang, Y. Liu, S. L. E, J. M. Zhao, D. J. Wu, Y. Q. Ning, S. L. Wu, L. J. Wang, C. J. Liang, D. X. Zhao, Z. R. Hong, D. Zhao, C. Q. Jin, X. B. Jing, F. S. Wang, W. L. Li, S. T. Lee, “Spontaneous emission properties of organic film in plane optical microcavity,” Thin Solid Films 363, 204–207 (2000). [CrossRef]
  5. J. Grüner, F. Cacialli, R. H. Friend, “Emission enhancement in single-layer conjugated polymer microcavities,” J. Appl. Phys. 80, 207–215 (1996). [CrossRef]
  6. R. H. Jordan, L. J. Rothberg, A. Dodabalapur, R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, 1997–1999 (1996). [CrossRef]
  7. S. Dirr, S. Wiese, H.-H. Johanns, D. Ammermann, A. Böhler, W. Grahn, W. Kowalsky, “Luminescence enhancement in microcavity organic multilayer structures,” Synth. Metals 91, 53–56 (1997). [CrossRef]
  8. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80, 6954–6964 (1996). [CrossRef]
  9. N. Takada, T. Tsutsui, S. Saito, “Control of emission characteristics in organic thin film electroluminescent diodes using an optical microcavity structure,” Appl. Phys. Lett. 63, 2032–2034 (1993). [CrossRef]
  10. H. Becker, S. E. Burns, N. Tessler, R. H. Friend, “Role of optical properties of metallic mirrors in microcavity structures,” J. Appl. Phys. 81, 2825–2829 (1997). [CrossRef]
  11. N. Tessler, S. Burns, H. Becker, R. H. Friend, “Suppressed angular color dispersion in planar microcavities,” Appl. Phys. Lett. 79, 556–558 (1997). [CrossRef]
  12. K. Neyts, P. De Visschere, D. K. Fork, G. B. Anderson, “Semitransparent metal or distributed Bragg reflector for wide-viewing-angle organic light-emitting-diode microcavities,” J. Opt. Soc. Am. B 17, 114–119 (2000). [CrossRef]
  13. A. D. Rakić, A. B. Djurišić, J. M. Elazar, M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  14. H. B. Michaelson, “The work function of the elements and its periodicity,” J. Appl. Phys. 48, 4729–4733 (1977). [CrossRef]
  15. F. G. Celii, T. B. Horton, D. F. Philips, “Characterization of organic thin films for OLEDs using spectroscopic ellipsometry,” J. Electron. Mater. 26, 366–371 (1997). [CrossRef]
  16. A. B. Djurišić, C. Y. Kwong, T. W. Lau, W. L. Guo, E. H. Li, Z. T. Liu, H. S. Kwok, L. S. M. Lam, W. K. Chan, “Optical properties of copper phthalocyanine,” Opt. Commun. 205, 155–162 (2002). [CrossRef]
  17. H. Benisty, H. De Neve, C. Weisbuch, “Impact of planar microcavity effects on light extraction. I. Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998). [CrossRef]
  18. C.-C. Chang, W.-C. Chen, “High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride-titania hybrid materials,” J. Polym. Sci. Part A Polym. Chem. 39, 3419–3427 (2001). [CrossRef]
  19. M. Benaissa, K. E. Gonslaves, S. P. Rangarajan, “AlGaN nanoparticle/polymer composite: synthesis, optical, and structural characterization,” Appl. Phys. Lett. 71, 3685–3697 (1997). [CrossRef]
  20. C. Lam, Y. F. Zhang, Y. H. Tang, C. S. Lee, I. Bello, S. T. Lee, “Large-scale synthesis of ultrafine Si nanoparticles by ball milling,” J. Cryst. Growth 220, 466–470 (2000). [CrossRef]
  21. S. Gao, D. Cui, B. Huang, M. Jiang, “Study on the factors affecting the particles size of GaP nanocrystalline materials,” J. Cryst. Growth 192, 89–92 (1998). [CrossRef]
  22. H. R. Philipp, D. G. Legrand, H. S. Cole, Y. S. Liu, “The optical properties of bisphenol-A polycarbonate,” Polym. Eng. Sci. 27, 1148–1155 (1987). [CrossRef]
  23. A. Borghesi, G. Guizzetti, “Gallium phosphide (GaP),” in Handbook of Optical Constants of Solids I, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), p. 445.
  24. D. E. Aspnes, J. B. Theeten, F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited