OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 36 — Dec. 20, 2002
  • pp: 7657–7666

Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient

Andreas Behrendt, Takuji Nakamura, Michitaka Onishi, Rudolf Baumgart, and Toshitaka Tsuda  »View Author Affiliations

Applied Optics, Vol. 41, Issue 36, pp. 7657-7666 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (199 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The lidar of the Radio Science Center for Space and Atmosphere (RASC; Kyoto, Japan) makes use of two pure rotational Raman (RR) signals for both the measurement of the atmospheric temperature profile and the derivation of a temperature-independent Raman reference signal. The latter technique is new and leads to significantly smaller measurement uncertainties compared with the commonly used vibrational Raman lidar technique. For the measurement of temperature, particle extinction coefficient, particle backscatter coefficient, and humidity simultaneously, only four lidar signals are needed: the elastic Cabannes backscatter signal, two RR signals, and the vibrational Raman water vapor signal. The RASC lidar provides RR signals of unprecedented intensity. Although only 25% of the RR signal intensities can be used with the present data-acquisition electronics, the 1-s statistical uncertainty of nighttime temperature measurements is lower than for previous systems and is <1K up to 11-km height for, e.g., a resolution of 500 m and 9 min. In addition, RR measurements in daytime also have become feasible.

© 2002 Optical Society of America

OCIS Codes
(010.7030) Atmospheric and oceanic optics : Troposphere
(010.7340) Atmospheric and oceanic optics : Water
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar
(290.5860) Scattering : Scattering, Raman
(300.6450) Spectroscopy : Spectroscopy, Raman

Original Manuscript: January 11, 2002
Revised Manuscript: September 16, 2002
Published: December 20, 2002

Andreas Behrendt, Takuji Nakamura, Michitaka Onishi, Rudolf Baumgart, and Toshitaka Tsuda, "Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient," Appl. Opt. 41, 7657-7666 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985). [CrossRef]
  2. S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985). [CrossRef]
  3. J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” Appl. Meteorol. 11, 108–112 (1972). [CrossRef]
  4. J. Cooney, M. Pina, “Laser radar measurements of atmospheric temperature profiles by use of Raman rotational backscatter,” Appl. Opt. 15, 602–603 (1976). [CrossRef] [PubMed]
  5. R. Gill, K. Geller, J. Farina, J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979). [CrossRef]
  6. Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983). [CrossRef] [PubMed]
  7. D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993). [CrossRef]
  8. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993). [CrossRef] [PubMed]
  9. C. R. Philbrick, “Raman lidar capability to measure tropospheric properties,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwenmer, eds., NASA/CP-1998-207671/PT1 (National Aeronautics and Space Administration, Langley Research Center, Hampton, Va.), pp. 289–292.
  10. A. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar using an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000). [CrossRef]
  11. A. Behrendt, J. Reichardt, A. Dörnbrack, C. Weitkamp, “Leewave PSCs in Northern Scandinavia between 22 and 26 January, 1998: lidar measurements of temperature and optical particle properties above esrange and mesoscale model analyses,” in Stratospheric Ozone 1999–Proceedings of the Fifth European Symposium, N. R. P. Harris, M. Guirlet, G. T. Amanatidis, eds., Air Pollution Research Rep. 73 (European Commission, Brussels, 2000), pp. 149–152.
  12. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef] [PubMed]
  13. The formula for calculating rotational Raman signal intensities can be found, e.g., in A. Behrendt, T. Nakamura, “Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature,” Opt. Express 10, 805–817 (2002), http://www.opticsinfobase.org/abstract.cfm?id=69680 .
  14. H. W. Schrötter, “Raman and infrared spectroscopic techniques for remote analysis of the atmosphere,” in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Heyden, London, 1982), Vol. 8, pp. 1–51.
  15. C.-Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875–4884 (2001). [CrossRef]
  16. H. Inaba, “Detection of atoms and molecules by Raman scattering and resonance fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed., Vol. 14 of Topics in Applied Physics (Springer-Verlag, Berlin, 1976), pp. 153–232.
  17. W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν1 and ν3,” Mol. Phys. 36, 727–732 (1978). [CrossRef]
  18. A. Behrendt, “Fernmessung atmosphaerischer Temperaturprofile in Wolken mit Rotations-Raman-Lidar,” doctoral dissertation (University of Hamburg, Hamburg, Germany, 2000).
  19. J. Cooney, “Normalization of elastic lidar returns by use of Raman rotational backscatter,” Appl. Opt. 14, 270–271 (1975). [CrossRef] [PubMed]
  20. J. Reichardt, S. E. Bisson, S. Reichardt, C. Weitkamp, B. Neidhart, “Rotational vibrational rotational Raman differential absorption lidar for atmospheric ozone measurements: methodology and experiment,” Appl. Opt. 39, 6072–6079 (2000). [CrossRef]
  21. V. M. Mitev, I. V. Grogorov, V. B. Simeonov, Yu. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction profile,” Bulg. J. Phys. 17, 67–74 (1990).
  22. V. M. Mitev, I. V. Grogorov, V. B. Simeonov, “Lidar measurements of aerosol extinction profiles: a comparison between two techniques—Klett inversion and pure rotational Raman scattering methods,” Appl. Opt. 31, 6469–6474 (1992). [CrossRef] [PubMed]
  23. S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969). [CrossRef]
  24. J. Cooney, “Remote measurement of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970). [CrossRef]
  25. J. Marling, “1.05–1.44 µm tunability and performance of the cw Nd3+:YAG laser,” IEEE J. Quantum Electron. 14, 56–62 (1978). [CrossRef]
  26. K. Kobayashi, T. Kitahara, T. D. Kawahara, Y. Saito, A. Nomura, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, M. Tsutsumi, “Simultaneous measurements of the dynamical structure of the mesopause region with lidars and MU radar,” Earth Planets Space 51, 731–739 (1999).
  27. H. Miyagawa, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, T. D. Kawahara, K. Kobayashi, T. Kitahara, A. Nomura, “Observations of mesospheric sporadic sodium layers with the MU radar and sodium lidars,” Earth Planets Space 51, 785–797 (1999).
  28. A. Behrendt, C. Weitkamp, “Optimizing the spectral parameters of a lidar receiver for rotational Raman temperature measurements,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th ILRC, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau Cedex, France, 2001), pp. 113–116.
  29. When this paper was revised, we had just made the first test measurements with a new data-acquisition system that allows us to detect signals in both analog and photon-counting modes simultaneously. Initial results underline this prediction.
  30. J. Zeyn, W. Lahmann, C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996). [CrossRef] [PubMed]
  31. Yu. F. Arshinov, S. M. Bobrovnikov, “Use of a Fabry–Perot Interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38, 4635–4638 (1999). [CrossRef]
  32. D. R. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955), p. 786.
  33. P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, Boston, Mass., 1992), pp. 44 ff.
  34. D. D. Turner, J. E. M. Goldsmith, “Twenty-four-hour Raman lidar water vapor measurements during the atmospheric radiation measurement program’s 1996 and 1997 water vapor intensive operation periods,” J. Atmos. Ocean. Technol. 16, 1062–1076 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited