OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 4 — Feb. 1, 2002
  • pp: 658–667

Glass-Fiber Self-Mixing Intra-Arterial Laser Doppler Velocimetry: Signal Stability and Feedback Analysis

Frits F. M. de Mul, Lorenzo Scalise, Anna L. Petoukhova, Marc van Herwijnen, Paul Moes, and Wiendelt Steenbergen  »View Author Affiliations


Applied Optics, Vol. 41, Issue 4, pp. 658-667 (2002)
http://dx.doi.org/10.1364/AO.41.000658


View Full Text Article

Acrobat PDF (254 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a blood velocimeter based on the principle of self-mixing in a semiconductor laser diode through an optical fiber. The intensity of the light is modulated by feedback from moving scattering particles that contain the Doppler-shift frequency. Upon feedback the characteristics of the laser diode change. The threshold current decreases, and an instable region may become present above the new threshold. The amplitude of the Doppler signal turns out to be related to the difference in intensity between situations with and without feedback. This amplitude is highest just above feedback. The suppression of reflection from the glass-fiber facets is of paramount importance in the obtaining of a higher signal-to-noise ratio. Using an optical stabilization of the feedback, we optimized the performance of the laser-fiber system and the Doppler modulation depth and clarified its behavior with a suitable physical model. We also investigated the effect of the finite coherence length of the laser. We tested the efficiency of the self-mixing velocimeter <i>in vivo</i> with the optical glass fiber inserted in the artery with endoscopic catheters, both in upstream and in downstream blood flow conditions. For the latter we used a special side-reflecting device solution for the fiber facet to allow downstream measurements.

© 2002 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(230.0230) Optical devices : Optical devices

Citation
Frits F. M. de Mul, Lorenzo Scalise, Anna L. Petoukhova, Marc van Herwijnen, Paul Moes, and Wiendelt Steenbergen, "Glass-Fiber Self-Mixing Intra-Arterial Laser Doppler Velocimetry: Signal Stability and Feedback Analysis," Appl. Opt. 41, 658-667 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-4-658


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaf, and J. G. Aarnoudse, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser,” Med. Biol. Eng. Comput. 30, 441–446 (1992).
  2. M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaf, A. C. M. Dassel, and J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
  3. M. H. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaf, A. C. M. Dassel, and J. G. Aarnoudse, “Fiber-coupled self-mixing diode-laser Doppler velocimeter: technical aspects and flow velocity profile disturbances in water and blood flows,” Appl. Opt. 33, 5628–5641 (1995).
  4. M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. E 1, 723–726 (1968).
  5. T. Tanaka and G. B. Benedek, “Measurements of the velocity of blood flow (in vivo) using a fiber optic catheter and optical mixing spectroscopy,” Appl. Opt. 14, 189–196 (1975).
  6. D. Kilpatrick, J. V. Tyberg, and W. W. Parmleg, “Blood velocity measurements by fiber optic laser Doppler anemometry,” IEEE Trans. Biomed. Eng. 29, 142–145 (1982).
  7. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
  8. L. Scalise, W. Steenbergen, and F. F. M. de Mul, “Self-mixing feedback in a laser diode for intra-arterial optical blood flowmetry,” Appl. Opt. 40, 4608–4615 (2001).
  9. N. Servagent, F. Gouaux, and T. Bosh, “Measurements of displacement using the self-mixing interference in a laser diode,” J. Opt. (Paris) 29, 163–173 (1998).
  10. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, The Netherlands, 1988).
  11. G. H. B. Thompson, D. F. Lovelace, and S. E. H. Turley, “Kinks in the light/current characteristic and near-field shifts in (GaAl)As-heterostructure stripe lasers and their explanation by the effect of self-focusing on a built in optical waveguide,” Solid State Electron. Dev. 2, 12–30 (1978).
  12. G. Arnold and K. Petermann, “Self-pulsing phenomena in (GaAl)As double-heterostructure injection lasers,” Opt. Quantum Electron. 10, 311–322 (1978).
  13. H. Temkin, N. A. Olsson, J. H. Abeles, R. A. Logan, and M. B. Panish, “Reflection noise in index-guided InGaAsP lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
  14. C. H. Henry and R. F. Kazarinov, “Instability of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron. QE-22, 294–301 (1986).
  15. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor lasers,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
  16. M. Fujiwara, K. Kubota, and R. Lang, “Low-frequency intensity fluctuation in laser diodes with external optical feedback,” Appl. Phys. Lett. 38, 217–220 (1981).
  17. J. C. Dainty, Laser Speckle and Related Phenomena (Springer-Verlag, Berlin, 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited