OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 4 — Feb. 1, 2002
  • pp: 700–706

Thermally assisted recording of holographic gratings in semicrystalline azobenzene-containing polymers

Jiro Minabe, Katsunori Kawano, and Yasunari Nishikata  »View Author Affiliations

Applied Optics, Vol. 41, Issue 4, pp. 700-706 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (347 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine optically induced birefringence in semicrystalline azopolymer films that are held at glass-transition temperature Tg. The birefringence increases markedly after interception of the pump beam; the saturation value depends on exposure time. In addition, the induced birefringence is completely erased by irradiation with a circularly polarized beam at Tg. Using this thermally assisted method, we demonstrate the holographic recording of a test image. The intensity of the diffracted beam also increases after interception of the writing beams. Furthermore, the retrieved image is found to have a resolution of ∼30 lp/mm. This resolution is comparable with that of the optical setup that is used. Accordingly, the thermally assisted recording by use of semicrystalline azopolymers is a promising method for reversible holographic storage.

© 2002 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.5470) Materials : Polymers
(210.2860) Optical data storage : Holographic and volume memories
(210.4810) Optical data storage : Optical storage-recording materials

Original Manuscript: March 19, 2001
Revised Manuscript: July 24, 2001
Published: February 1, 2002

Jiro Minabe, Katsunori Kawano, and Yasunari Nishikata, "Thermally assisted recording of holographic gratings in semicrystalline azobenzene-containing polymers," Appl. Opt. 41, 700-706 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Eich, J. H. Wendorff, B. Reck, H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” Makromol. Chem. Rapid Commun. 8, 59–63 (1987). [CrossRef]
  2. M. Eich, J. H. Wendorff, “Laser-induced gratings and spectroscopy in monodomains of liquid-crystalline polymers,” J. Opt. Soc. Am. B 7, 1428–1436 (1990). [CrossRef]
  3. S. Hvilsted, F. Andruzzi, P. S. Ramanujam, “Side-chain liquid-crystalline polyesters for optical information storage,” Opt. Lett. 17, 1234–1236 (1992). [CrossRef] [PubMed]
  4. S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, S. G. Kostromine, “Holographic data storage in amorphous polymers,” Adv. Mater. 10, 855–859 (1998). [CrossRef]
  5. S. J. Zilker, M. R. Huber, T. Bieringer, D. Haarer, “Holographic recording in amorphous side-chain polymers: a comparison of two different design philosophies,” Appl. Phys. B 68, 893–897 (1999). [CrossRef]
  6. K. Kawano, T. Ishii, J. Minabe, T. Niitsu, Y. Nishikata, K. Baba, “Holographic recording and retrieval of polarized light by use of polyester containing cyanoazobenzene units in the side chain,” Opt. Lett. 24, 1269–1271 (1999). [CrossRef]
  7. P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992). [CrossRef]
  8. T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1. A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984). [CrossRef] [PubMed]
  9. L. Läsker, J. Stumpe, T. Fischer, M. Rutloh, S. Kostromin, R. Ruhmann, “Influence of supramolecular order on the light-induced reorientation process in photochromic side group polymers,” Mol. Cryst. Liq. Cryst. 261, 371–381 (1995). [CrossRef]
  10. J. Stumpe, T. Fischer, M. Rutloh, R. Rosenhauer, J. G. Meier, “Photoinduced alignment of LC polymers by the combination of photoorientation and thermotropic self-organization,” in Liquid Crystals III, I.-C. Khoo, ed., Proc. SPIE3800, 150–163 (1999). [CrossRef]
  11. M. Kidowaki, T. Fujiwara, S. Morino, K. Ichimura, J. Stumpe, “Thermal amplification of photoinduced optical anisotropy of p-cyanoazobenzene polymer films monitored by temperature scanning ellipsometry,” Appl. Phys. Lett. 76, 1377–1379 (2000). [CrossRef]
  12. M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, H. Fujiwara, “Synthesis and properties of polyesters having cyanoazobenzene units in the side chain,” Macromol. Rapid Commun. 15, 21–29 (1994). [CrossRef]
  13. K. Nakagawa, R. Komatsu, H. Fujiwara, M. Sato, “Holographic recording in polyesters having cyanoazobenzene units in the side chain,” in 17th Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 571–572 (1996).
  14. F. Langugné Labarthet, P. Rochon, A. Natansohn, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999). [CrossRef]
  15. P. Rochon, E. Batalla, N. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995). [CrossRef]
  16. D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995). [CrossRef]
  17. J. Minabe, K. Kawano, Y. Nishikata, T. Ishii, T. Niitsu, K. Baba, “Dark enhancement of optically induced birefringence in azobenzene-containing polyester films,” in Nonlinear Optics: Materials, Fundamentals and Applications, Vol. 46 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 74–76.
  18. P. S. Ramanujam, S. Hvilsted, F. Andruzzi, “Novel biphotonic holographic storage in a side-chain liquid crystalline polyester,” Appl. Phys. Lett. 62, 1041–1043 (1993). [CrossRef]
  19. H. Bach, K. Anderle, Th. Fuhrmann, J. H. Wendorff, “Biphoton-induced refractive index change in 4-amino-4′-nitroazobenzene/polycarbonate,” J. Phys. Chem. 100, 4135–4140 (1996). [CrossRef]
  20. P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, “Transient biphotonic grating in photoisomerizative azo materials,” Phys. Rev. B 57, 3874–3880 (1998). [CrossRef]
  21. T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 2. Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23, 4588–4591 (1984). [CrossRef]
  22. K. Kawano, J. Minabe, T. Niitsu, T. Ishii, Y. Nishikata, K. Baba, “Optical computing a vector holographic memory system,” Opt. Lett. 25, 1077–1079 (2000). [CrossRef]
  23. C. Sánchez, R. Alcalá, S. Hvilsted, P. S. Ramanujam, “Biphotonic holographic gratings in azobenzene polyesters: surface relief phenomena and polarization effects,” Appl. Phys. Lett. 77, 1440–1442 (2000). [CrossRef]
  24. C. Kulinna, I. Zebger, S. Hvilsted, P. S. Ramanujam, H. W. Siesler, “Characterization of the segmental mobility of liquid-crystalline side-chain polyesters by Fourier-transform infrared spectroscopy,” Macromol. Symp. 83, 169–181 (1994). [CrossRef]
  25. P. S. Ramanujam, S. Hvilsted, I. Zebger, H. W. Siesler, “On the explanation of the biphotonic processes in polyesters containing azobenzene moieties in the side chain,” Macromol. Rapid Commun. 16, 455–461 (1995). [CrossRef]
  26. O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor–acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys. 1, 4219–4224 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited