OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 4 — Feb. 1, 2002
  • pp: 734–738

Birefringent Imaging Spectrometer

Gao Zhan, Kazuhiko Oka, Tsuyoshi Ishigaki, and Naoshi Baba  »View Author Affiliations


Applied Optics, Vol. 41, Issue 4, pp. 734-738 (2002)
http://dx.doi.org/10.1364/AO.41.000734


View Full Text Article

Acrobat PDF (236 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Fourier-transform imaging spectrometer, believed to be novel, based on the Savart polariscope is presented. There is no slit in this instrument, which means that it has a high throughput. The principle and the system configuration are described. Several preliminary experimental results are shown.

© 2002 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6190) Spectroscopy : Spectrometers

Citation
Gao Zhan, Kazuhiko Oka, Tsuyoshi Ishigaki, and Naoshi Baba, "Birefringent Imaging Spectrometer," Appl. Opt. 41, 734-738 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-4-734


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. J. Persky, “A review of space infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763–4797 (1995).
  2. P. D. Hammer, F. P. J. Valcro, and D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE 1937, 244–255 (1993).
  3. L. J. Otten III, and E. W. Butler, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 418–424 (1995).
  4. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 11, pp. 143–145.
  5. G. W. Stroke and A. T. Funkhouser, “Fourier transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
  6. M. J. Padgett and A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
  7. M. Françcon and S. Mallick, Polarization Interferometer (Wiley, New York, 1971), Chap. 2, pp. 20–23.
  8. M. Hashimoto and S. Kawata, “Multichannel Fourier-transform infrared spectrometer,” Appl. Opt. 31, 6096–6101 (1992).
  9. J. B. Rafert, R. G. Sellar, and J. H. Blatt, “Monolithic Fourier-transform imaging spectrometer,” Appl. Opt. 34, 7228–7230 (1995).
  10. M. L. Junttila, J. Kauppinen and E. Ikonen, “Performance limits of stationary Fourier transform spectrometers,” J. Opt. Soc. Am. A 8, 1457–1462 (1991).
  11. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 2, pp. 20–21.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited