OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 4 — Feb. 1, 2002
  • pp: 756–762

Properties of Titanium Dioxide Films Prepared by Reactive Electron-Beam Evaporation from Various Starting Materials

Hubert Selhofer, Elmar Ritter, and Robert Linsbod  »View Author Affiliations

Applied Optics, Vol. 41, Issue 4, pp. 756-762 (2002)

View Full Text Article

Acrobat PDF (246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



There is a wide choice of starting materials for the production of titanium dioxide films by reactive electron-beam evaporation. We have investigated the specific merits of these materials in terms of refractive index, stress, and abrasion resistance of the resultant titanium dioxide films. The suboxides TiO, Ti2O3, and Ti3O5 as well as titanium dioxide and titanium metal were reactively evaporated, and titanium dioxide films free of absorption were obtained on substrates at 25 and 250°C. On unheated substrates the refractive index, which varies from 2.06 to 2.22, the stress, and the abrasion resistance all depend on the starting material used. On substrates heated to 250°C the refractive indices of all films lie closely about 2.4, and all films show high tensile stress and good abrasion resistance.

© 2002 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(310.0310) Thin films : Thin films
(310.1620) Thin films : Interference coatings
(310.1860) Thin films : Deposition and fabrication
(310.6860) Thin films : Thin films, optical properties

Hubert Selhofer, Elmar Ritter, and Robert Linsbod, "Properties of Titanium Dioxide Films Prepared by Reactive Electron-Beam Evaporation from Various Starting Materials," Appl. Opt. 41, 756-762 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. C. Cronemeyer, “Infrared absorption of reduced rutile TiO2 single crystals,” Phys. Rev. 113, 1222–1226 (1959).
  2. V. N. Bogomolov and D. N. Mirlin, “Optical absorption by polarons in rutile M(TiO2) single crystals,” Phys. Status Solidi 27, 443–453 (1968).
  3. H. K. Pulker, G. Paesold, and E. Ritter, “Refractive indices of TiO2 films produced by reactive evaporation of various titanium–oxygen phases,” Appl. Opt. 15, 2986–2991 (1976).
  4. H. W. Lehmann and K. Frick, “Optimizing deposition parameters of electron beam evaporated TiO2 films,” Appl. Opt. 27, 4920–4924 (1988).
  5. E. Ritter, “Deposition of oxide films by reactive evaporation,” J. Vac. Sci. Technol. 3, 225–226 (1966).
  6. B. Dudenhausen and G. Möllenstedt, “Untersuchungen an reaktiv aufgedampften TiO2–Schichten,” Z. Angew. Phys. 27, 191–197 (1969).
  7. M. G. Krishna, S. Kanakaraju, and S. Mohan, “Structure and composition related properties of titania thin films,” Vacuum 46, 33–36 (1995).
  8. Q. Tang, “Study on the optical properties originated by the microstructures of thin oxide films,” Ph.D. dissertation (Kobe Design University, Kobe, Japan, 1997).
  9. T. Aoki and S. Ogura, “In-situ stress and spectral characteristics of optical TiO2 thin films from various starting materials,” in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 207–209.
  10. A. Alvarez-Herrero, A. J. Fort, H. Guerrero, and E. Bernabeu, “Ellipsometric characterization and influence of relative humidity on TiO2 layers optical properties,” Thin Solid Films 349, 212–219 (1999).
  11. T. Aoki, “Study of thin film starting material with ‘in situ’ stress and ‘in situ’ optical measurement,” Ph.D. dissertation (Kobe Design University, Kobe, Japan, 1999; in Japanese).
  12. K. N. Rao and S. Mohan, “Chemical composition of electron-beam-evaporated TiO2 films,” J. Vac. Sci. Technol. A 11, 394–397 (1993).
  13. K. N. Rao, M. A. Murphy, and S. Mohan, “Optical properties of electron-beam-evaporated TiO2 films,” Thin Solid Films 176, 181–186 (1989).
  14. K. N. Rao, S. Mohan, M. S. Hedge, and T. V. Balasubramian, “Optical properties of electron-beam-evaporated TiO2 films deposited in an ionized oxygen medium,” J. Vac. Sci. Technol. A 8, 3260–3264 (1990).
  15. S. Pongratz and A. Zöller, “Plasma ion-assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A 10, 1897–1904 (1992).
  16. G. Atanassov, R. Thielsch, and D. Popov, “Optical properties of TiO2, Y2O3 and CeO2 thin films deposited by electron beam evaporation,” Thin Solid Films 223, 288–292 (1993).
  17. S. Chiao, B. Bovard, and H. A. Macleod, “Repeatability of the composition of titanium oxide films produced by evaporation of Ti2O3,” Appl. Opt. 37, 5284–5290 (1998).
  18. G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342, 83–92 (1999).
  19. H. Selhofer, “Titanium oxides for optical-interference coatings,” Vacuum Thin Films (August, 1999), pp. 20–24.
  20. H. Selhofer and R. Müller, “Comparison of pure and mixed coating materials for AR coatings for use by reactive evaporation on glass and plastic lenses,” Thin Solid Films 351, 180–183 (1999).
  21. Q. Tang, K. Kikuchi, S. Ogura, and H. A. Macleod, “Mechanism of columnar microstructure growth in titanium oxide thin films deposited by ion-beam assisted deposition,” J. Vac. Sci. Technol. A 17, 3379–3384 (1999).
  22. H. Sankur and W. Gunning, “Sorbed water and intrinsic stress in composite TiO2–SiO2 films,” J. Appl. Phys. 66, 807–812 (1989).
  23. P. Vretenar, “Mechanical stress in oxide thin films,” Vacuum 43, 727–729 (1992).
  24. P. Löbel, M. Huppertz, and D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72–79 (1994).
  25. S. Y. Kim, “Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin film by optical methods,” Appl. Opt. 35, 6703–6707 (1996).
  26. J. V. Grahn, M. Linder, and E. Fredriksson, “In situ growth of evaporated TiO2 thin films using oxygen radicals: effect of substrate temperature,” J. Vac. Sci. Technol. A 16, 2495–2500 (1998).
  27. H. K. Jang, S. W. Whangbo, H. B. Kim, K. Y. Im, Y. S. Lee, I. W. Lyo, C. N. Whang, G. Kim, H. S. Lee, and J. M. Lee, “Titanium oxide films on Si(100) deposited by electron-beam evaporation at 250 °C,” J. Vac. Sci. Technol. A 18, 917–921 (2000).
  28. H. K. Jang, S. W. Whangbo, H. B. Kim, K. Y. Im, Y. S. Lee, I. W. Lyo, C. N. Whang, G. Kim, H. S. Lee, and J. M. Lee, “Titanium oxide films on Si(100) deposited by electron-beam evaporation,” J. Vac. Sci. Technol. A 18, 2932–2936 (2000).
  29. Y. Yamada, H. Uyama, S. Watanabe, and H. Nozoye, “Deposition at low substrate temperatures of high quality TiO2 films by radical beam-assisted evaporation,” Appl. Opt. 38, 6638–6641 (1999).
  30. G. Hass, “Preparation, properties and optical applications of thin films of titanium dioxide,” Vacuum 11, 331–345 (1952).
  31. O. Anderson, K. Bange, and C. Ottermann, “Properties and characterization of dielectric thin films,” in Thin Films on Glass, H. Bach and D. Krause, eds. (Springer-Verlag, Berlin, 1997), pp. 137–161.
  32. A. Dakka, J. Lafait, C. Sella, S. Berthier, M. Abd-Lefdil, J. C. Martin, and M. Maaza, “Optical properties of Ag–TiO2 nanocermet films prepared by cosputtering and multilayer deposition techniques,” Appl. Opt. 39, 2745–2753 (2000).
  33. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, and A. Saxer, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28, 3303–3317 (1989).
  34. P. J. Martin, A. Bendavid, and H. Takikawa, “Ionized plasma vapor deposition and filtered arc deposition: processes, properties and applications,” J. Vac. Sci. Technol. A 17, 2351–2359 (1999).
  35. A. Bendavid, P. J. Martin, and H. Takikawa, “Deposition and modification of titanium dioxide films by filtered arc deposition,” Thin Solid Films 360, 241–249 (2000).
  36. X. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Design and experimental approach of optical reflection filters with graded refractive index profiles,” J. Vac. Sci. Technol. A 17, 206–211 (1999).
  37. X. Wang, H. Masumoto, Y. Someno, L. Chen, and T. Hirai, “Design and preparation of a 33-layer optical reflection filter of TiO2-SiO2 system,” J. Vac. Sci. Technol. A 18, 933–937 (2000).
  38. R. Dannenberg and P. Green, “Reactive sputter deposition of titanium dioxide,” Thin Solid Films 360, 122–127 (2000).
  39. J.-Y. Kim, E. Barnat, E. J. Rymaszewski, and T.-M. Lu, “Frequency-dependent pulsed direct current magnetron sputtering of titanium oxide films,” J. Vac. Sci. Technol. A 19, 429–434 (2001).
  40. “Grundlagen der Vakuumtechnik, Berechnungen und Tabellen,” catalog 19989, edition 01.86 (Leybold-Heraeus GmbH, Hanau, 1986), p. 77.
  41. K. Kerner and G. Mutschler, “Oxydation von Aluminium bei reaktivem Aufdampfen in Sauerstoff,” Bosch Tech. Ber. 3, 3–9 (1970).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited