OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 4 — Feb. 1, 2002
  • pp: 768–777

Quantitative dental measurements by use of simultaneous frequency-domain laser infrared photothermal radiometry and luminescence

Lena Nicolaides, Chris Feng, Andreas Mandelis, and Stephen H. Abrams  »View Author Affiliations

Applied Optics, Vol. 41, Issue 4, pp. 768-777 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (619 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Modulated (frequency-domain) infrared photothermal radiometry (PTR) is used as a dynamic quantitative dental inspection tool complementary to modulated luminescence (LM) to quantify sound enamel or dentin. A dynamic high-spatial-resolution experimental imaging setup, which can provide simultaneous measurements of laser-induced modulated PTR and LM signals from defects in teeth, has been developed. Following optical absorption of laser photons, the experimental setup can monitor simultaneously and independently the nonradiative (optical-to-thermal) energy conversion by infrared PTR and the radiative deexcitation by LM emission. The relaxation lifetimes (τ1, τ2) and optical absorption, scattering, and spectrally averaged infrared emission coefficients (μα, μs, μ¯IR) of enamel are then determined with realistic three-dimensional LM and photothermal models for turbid media followed by multiparameter fits to the data. A quantitative band of values for healthy enamel with respect to these parameters can be generated so as to provide an explicit criterion for the assessment of healthy enamel and, in a future extension, to facilitate the diagnosis of the onset of demineralization in carious enamel.

© 2002 Optical Society of America

OCIS Codes
(260.3060) Physical optics : Infrared
(260.3800) Physical optics : Luminescence

Original Manuscript: November 9, 2001
Revised Manuscript: May 29, 2001
Published: February 1, 2002

Lena Nicolaides, Chris Feng, Andreas Mandelis, and Stephen H. Abrams, "Quantitative dental measurements by use of simultaneous frequency-domain laser infrared photothermal radiometry and luminescence," Appl. Opt. 41, 768-777 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Longbottom, “Caries detection—current status and future prospects using lasers,” in Lasers in Dentistry VI, J. D. B. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3910, 212–218 (2000). [CrossRef]
  2. V. D. Rijke, J. J. ten Bosch, “Optical quantification of caries like lesions in vitro by use of fluorescent dye,” J. Dent. Res. 69, 1184–1187 (1990). [CrossRef] [PubMed]
  3. K. Konig, H. Schneckenburger, R. Hibst, “Time-gated in vivo autofluorescence imaging of dental caries,” Cell Mol. Biol. 45, 233–239 (1999). [PubMed]
  4. K. Konig, G. Flemming, K. Hibst, “Laser-induced autofluorescence spectroscopy of dental caries,” Cell Mol. Biol. 44, 1293–1300 (1998).
  5. L. Nicolaides, A. Mandelis, S. H. Abrams, “Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence,” J. Biomed. Opt. 5, 31–39 (2000). [CrossRef] [PubMed]
  6. A. Mandelis, L. Nicolaides, C. Feng, S. H. Abrams, “Novel dental depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence,” in Biomedical Optoacoustics, A. Oraevsky, ed., Proc. SPIE3916, 130–137 (2000). [CrossRef]
  7. A. J. Welch, M. J. C. van Gemert, eds., Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995). [CrossRef]
  8. S. A. Prahl, A. I. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992). [CrossRef] [PubMed]
  9. A. Mandelis, C. Feng, “Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media,” Phys. Rev. E (to be published).
  10. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  11. A. Ishimaru, Y. Kuga, R. L.-T. Cheung, K. Shimizu, “Scattering and diffusion of a beam wave in randomly distributed scatterers,” J. Opt. Soc. Am. 73, 131–136 (1983). [CrossRef]
  12. A. Mandelis, Diffusion-Wave Fields: Mathematical Methods and Green Functions (Springer, New York, 2001). [CrossRef]
  13. R. R. Anderson, H. Beck, U. Bruggemann, W. Farinelli, S. L. Jacques, J. Parrish, “Pulsed photothermal radiometry in turbid media: internal reflection of backscattered radiation strongly influences optical dosimetry,” Appl. Opt. 28, 2256–2262 (1989), Eq. (8)
  14. R. A. J. Groenhuis, H. A. Ferwerda, J. J. T. Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: theory,” Appl. Opt. 22, 2456–2462 (1983). [CrossRef] [PubMed]
  15. M. N. Osizik, Boundary Value Problems of Heat Conduction (Dover, New York, 1968).
  16. J. Vanniasinkam, A. Mandelis, M. Munidasa, M. Kokta, “Deconvolution of surface and direct metastable-state blackbody emission in Ti:sapphire laser materials using boxcar time-domain photothermal radiometry,” J. Opt. Soc. Am. B 15, 1647–1655 (1998). [CrossRef]
  17. B. Majaron, W. Verkruysse, B. S. Tanenbaum, T. E. Milner, J. S. Nelson, “Pulsed photothermal profiling of hypervascular lesions: some recent advances,” in Lasers in Surgery: Advanced Characterization, Therapeutics and Systems X, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, N. Kollias, H. Liu, R. S. Malek, G. M. Peavy, H.-D. Reidenbach, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Towers, T. A. Woodward, eds., Proc. SPIE3907, 114–125 (2000).
  18. W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984). [CrossRef]
  19. R. E. Imhof, B. Zhang, D. J. S. Birch, “Photothermal radiometry for NDE,” in Non-Destructive Evaluation, Vol. 2 of Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1994), Chap. 7, pp. 185–236.
  20. D. Spitzer, J. J. ten Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calcif. Tissue Res. 17, 129–137 (1975). [CrossRef] [PubMed]
  21. D. Fried, R. E. Glena, J. D. B. Featherstone, W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” App. Opt. 34, 1278–1285 (1995). [CrossRef]
  22. M. Braden, “Heat conduction in normal human teeth,” Arch. Oral Biol. 9, 479–486 (1964). [CrossRef] [PubMed]
  23. W. M. Star, J. P. A. Marijnissen, “New trends in photobiology light dosimetry: status and prospects,” J. Photochem. Photobiol. B 1, 149–159 (1987). [CrossRef] [PubMed]
  24. J. R. Zijp, J. J. ten Bosch, R. A. J. Groenhuis, “HeNe-laser light scattering by human dental enamel,” J. Dent. Res. 74, 1891–1898 (1995). [CrossRef] [PubMed]
  25. J. W. Osborn, “The nature of Hunter-Shreger bands in enamel,” Arch. Oral Biol. 10, 929–933 (1965). [CrossRef] [PubMed]
  26. A. J. Gwinnett, “Structure and composition of enamel,” J. Oper. Dent. 17, Suppl. 5, 10–17 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited