OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 4 — Feb. 1, 2002
  • pp: 778–791

Improvement of Image Quality in Diffuse Optical Tomography by use of Full Time-Resolved Data

Feng Gao, Huijuan Zhao, and Yukio Yamada  »View Author Affiliations


Applied Optics, Vol. 41, Issue 4, pp. 778-791 (2002)
http://dx.doi.org/10.1364/AO.41.000778


View Full Text Article

Acrobat PDF (1963 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the field of diffuse optical tomography (DOT), it is widely accepted that time-resolved (TR) measurement can provide the richest information on photon migration in a turbid medium, such as biological tissue. However, the currently available image reconstruction algorithms for TR DOT are based mostly on the cw component or some featured data types of original temporal profiles, which are related to the solution of a time-independent diffusion equation. Although this methodology can greatly simplify the reconstruction process, it suffers from low spatial resolution and poor quantitativeness owing to the limitation of effectively applicable data types. To improve image quality, it has been argued that exploiting the full TR data is essential. We propose implementation of a DOT algorithm by using full TR data and furthermore a variant algorithm with time slices of TR data to alleviate the computational complexity and enhance noise robustness. Compared with those algorithms where the featured data types are used, our evaluations on the spatial resolution and quantitativeness show that a significant improvement in imaging quality can be achieved when full TR data are used, which convinces the DOT community of the potential advantage of the TR domain over cw and frequency domains.

© 2002 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography

Citation
Feng Gao, Huijuan Zhao, and Yukio Yamada, "Improvement of Image Quality in Diffuse Optical Tomography by use of Full Time-Resolved Data," Appl. Opt. 41, 778-791 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-4-778


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. B. Colak, D. G. Papaioannou, G. W. t’Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, and N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–219 (1997).
  2. H. Jiang, K. D. Paulsen, and U. L. Osterberg, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
  3. M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite element for the forward and inverse models in optical tomography,” J. Math. Imaging Vision 3, 263–283 (1993).
  4. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
  5. S. R. Arridge, M. Schweiger, and D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE 1767, 372–383 (1992).
  6. M. Schweiger and S. R. Arridge, “Application of temporal filters to time-resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
  7. F. Gao, P. Poulet, and Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).
  8. F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, and Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 4250, 351–361 (2001).
  9. E. M. C. Hillman, J. C. Hebden, F. E. R. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
  10. F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, and S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
  11. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
  12. R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, and R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, and P. van de Zee, eds., Proc. SPIE IS11, 87–120 (1993).
  13. A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
  14. R. Model, M. Orlt, and M. Walzel, “Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data,” J. Opt. Soc. Am. A 14, 313–323 (1997).
  15. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
  16. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R42–R93 (1999).
  17. W. G. Egan and T. W. Hilgeman Optical Properties of Inhomogeneous Materials (Academic, New York, 1979).
  18. S. R. Arridge, M. Scheweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 24, 299–309 (1993).
  19. J. D. Lambert, Computational Methods in Ordinary Differential Equations (Wiley, New York, 1973).
  20. G. T. Herman, Image Reconstruction from Projections: the Fundamentals of Algorithm of Computerized Tomography (Academic, New York, 1980).
  21. G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Opt. Lett. 33, 6699–6701 (1994).
  22. R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
  23. F. Bevilacqua, D. Piguet, P. Marguet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: application to human brain,” Appl. Opt. 32, 574–579 (1993).
  24. S. R. Arridge and W. L. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
  25. V. G. Romanov and S. He, “Some uniqueness theorems for mammography-related time-domain inverse problems for the diffusion equation,” Inverse Probl. 16, 447–459 (2000).
  26. S. R. Arridge and M. Schweiger, “Gradient-based optimization scheme for optical tomography,” Opt. Exp. 2, 212–226 (1998).
  27. B. W. Pogue, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Express 4, 270–286 (1999), http://www.opticsexpress.org.
  28. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
  29. S. R. Arridge, “Photon measurement density functions. Part 1: Analytic forms,” Appl. Opt. 34, 7395–7409 (1995).
  30. S. R. Arridge and M. Schweiger, “Photon measurement density functions. Part 2: finite element calculations,” Appl. Opt. 34, 8026–8037 (1995).
  31. J. C. Ye, K. J. Webb, R. P. Millane, and T. J. Downar, “Modified distorted Born iterative method with an approximate Frechet derivative for optical diffusion tomography,” J. Opt. Soc. Am. A 16, 1814–1826 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited