OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 4 — Feb. 1, 2002
  • pp: 792–801

Monte Carlo Model and Single-Scattering Approximation of the Propagation of Polarized Light in Turbid Media Containing Glucose

Xueding Wang, Gang Yao, and Lihong V. Wang  »View Author Affiliations

Applied Optics, Vol. 41, Issue 4, pp. 792-801 (2002)

View Full Text Article

Acrobat PDF (1295 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a single-scattering model as well as a Monte Carlo model of the effect of glucose on polarized light in turbid media. Glucose alters the Mueller-matrix patterns of diffusely backscattered and forward-scattered light because glucose molecules rotate the polarization plane of linearly polarized light. For example, the angles of rotation in Mueller-matrix elements S21 and S12 are linearly related to the concentration of glucose and increase with the source-detector distance. In the nondiffusion regime, the two models agree well with each other. In the diffusion regime, the single-scattering model is invalid, but there still exists a linear relationship between the angles of rotation in the Mueller-matrix elements and the concentration of glucose, which is predicted by the Monte Carlo model.

© 2002 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(290.0290) Scattering : Scattering
(290.1350) Scattering : Backscattering
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

Xueding Wang, Gang Yao, and Lihong V. Wang, "Monte Carlo Model and Single-Scattering Approximation of the Propagation of Polarized Light in Turbid Media Containing Glucose," Appl. Opt. 41, 792-801 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. L. Jacques, L. H. Wang, D. V. Stephens, and M. Ostermeyer, “Polarized light transmission through skin using video reflectometry: toward optical tomography of superficial tissue layers,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE 2671, 199–220 (1996).
  2. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).
  3. M. J. Rakovic, G. W. Kattawar, M. Mehrubeoglu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Cote, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399–3408 (1999).
  4. G. Yao and L.-H. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537–539 (1999).
  5. S. L. Jiao, G. Yao, and L.-H. Wang, “Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue by optical coherence tomography,” Appl. Opt. 39, 6318–6324 (2000).
  6. A. Ambirajan and D. C. Look, “A backward Monte Carlo study of the multiple scattering of a polarized laser beam,” J. Quantum Spectrosc. Radiat. Transfer 58, 171–192 (1997).
  7. A. H. Hielscher, A. A. Elick, J. R. Mourant, and I. J. Bigio, “Biomedical diagnostic with diffusely backscattered linearly and circularly polarized light,” in Biomedical Sensing, Imaging, and Tracking Technologies II, R. A. Lieberman, T. Vo-Dinh, and G. G. Vurek, eds., Proc. SPIE 2976, 298–305 (1997).
  8. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matri-ces of highly scattering media,” Opt. Express 1, 441–454 1997, http://www.opticsexpress.org.
  9. S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580–1588 (2000).
  10. G. Yao and L.-H. Wang, “Propagation of polarized light in turbid media: simulated animation sequences,” Opt. Express 7, 198–203 (2000), http://www.opticsexpress.org.
  11. B. D. Cameron, M. J. Rakovic, M. Mehrubeoglu, G. Kattawar, S. Rastegar, L. V. Wang, and G. L. Cote, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485–487 (1998).
  12. M. J. Rakovic and G. W. Kattawar, “Theoretical analysis of polarization patterns from incoherent backscattering of light,” Appl. Opt. 37, 3333–3338 (1998).
  13. M. Kohl, M. Cope, M. Essenpreis, and D. Bocker, “Influence of glucose concentration on light scattering in tissue-simulation phantoms,” Opt. Lett. 19, 2170–2173 (1994).
  14. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062–2064 (1994).
  15. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, and D. Bocker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
  16. M. Mehrubeoglu, N. Kehtarnavaz, S. Rastegar, and L. V. Wang, “Effect of molecular concentrations in tissue-simulating phantoms on images obtained using diffuse reflectance polarimetry,” Opt. Express 3, 286–297 (1998), http://www. opticsexpress.org.
  17. G. X. Zhou and J. M. Schmitt, “Sensitive detection of optical rotation in liquids by reflection polarimetry,” Rev. Sci. Instrum. 64, 2801–2807 (1993).
  18. G. L. Cote, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng. 39, 752–756 (1992).
  19. B. D. Cameron and G. L. Cote, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44, 1221–1227 (1997).
  20. C. Chou, Y. C. Huang, C. M. Feng, and M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36(1), 356–359 (1997).
  21. C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Appl. Opt. 37, 3553–3557 (1998).
  22. C. Pu, Z. H. Zhu, and Y. H. Lo, “A surface-micromachined optical self-homodyne polarimetric sensor for noninvasive glucose monitoring,” IEEE Photon. Technol. Lett. 12, 190–192 (2000).
  23. B. P. Ablitt, K. I. Hopcraft, K. D. Turpin, P. C. Y. Chang, J. G. Walker, and E. Jakeman, “Imaging and multiple scattering through media containing optically active particles,” Waves Random Media 9, 561–572 (1999).
  24. R. C. N. Studinski and I. A. Vitkin, “Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction,” J. Biomed. Opt. 5, 330–337 (2000).
  25. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge U. Press, London, 1982).
  26. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  27. L. H. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
  28. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 79th ed. (CRC Press, Boca Raton, Fla., 1998), pp. 3–12 and 8–64.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited