OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 4 — Feb. 1, 2002
  • pp: 805–812

High-Resolution Full-Field Optical Coherence Tomography with a Linnik Microscope

Arnaud Dubois, Laurent Vabre, Albert-Claude Boccara, and Emmanuel Beaurepaire  »View Author Affiliations


Applied Optics, Vol. 41, Issue 4, pp. 805-812 (2002)
http://dx.doi.org/10.1364/AO.41.000805


View Full Text Article

Acrobat PDF (1606 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe an original microscope for high-resolution optical coherence tomography applications. Our system is based on a Linnik interference microscope with high-numerical-aperture objectives. Lock-in detection of the interference signal is achieved in parallel on a CCD by use of a photoelastic birefringence modulator and full-field stroboscopic illumination with an infrared LED. Transverse cross-section (en-face, or XY) images can be obtained in real time with better than 1-μm axial (Z) resolution and 0.5-μm transverse (XY) resolution. A sensitivity of ~80 dB is reached at a 1-image/s acquisition rate, which allows tomography in scattering media such as biological tissues.

© 2002 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(180.3170) Microscopy : Interference microscopy

Citation
Arnaud Dubois, Laurent Vabre, Albert-Claude Boccara, and Emmanuel Beaurepaire, "High-Resolution Full-Field Optical Coherence Tomography with a Linnik Microscope," Appl. Opt. 41, 805-812 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-4-805


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).
  2. T. Wilson, Confocal Microscopy (Academic, London, 1990).
  3. J. Pawley, ed., The Handbook of Confocal Microscopy, 2nd ed. (Plenum, New York, 1995), p. 445.
  4. K. Creath, “Phase-measurements interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, New York, 1988), Vol. XXVI, pp. 349–393.
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
  6. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).
  7. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
  8. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Bopart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
  9. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–593 (1994).
  10. M. Kempe, W. Rudolph, and E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46–52 (1996).
  11. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
  12. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
  13. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo optical coherence tomography cellular imaging,” Nature Med. 4, 861–867 (1998).
  14. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
  15. E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz, “Combined scanning optical coherence and two-photon-excited fluorescence microscopy,” Opt. Lett. 24, 969–971 (1999).
  16. A. Gh. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Coherence imaging by use of a Newton rings sampling function,” Opt. Lett. 21, 1789–1791 (1996).
  17. G. S. Kino and S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
  18. M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE 775, 233–247 (1987).
  19. A. Dubois, J. Selb, L. Vabre, and A. C. Boccara, “Phase measurements with wide-aperture interferometers,” Appl. Opt. 39, 2323–2331 (2000).
  20. J. C. Canit and J. Badoz, “New design for a photoelastic modulator,” Appl. Opt. 22, 592–594 (1983).
  21. A. C. Boccara, F. Charbonnier, D. Fournier, and P. Gleyzes, “Procédé et dispositif de détection synchrone multicanal,” French patent FR90.092255 (08255, June 29, 1990) and international extensions.
  22. A. Dubois, “Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets,” J. Opt. Soc. Am. A 18, 1972–1979 (2001).
  23. J. W. Goodman, Statistical Optics (Wiley, New York, 1984), Chap. 5.
  24. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39, 1194–1201 (2000).
  25. K. K. Bizheva, A. M. Siegel, A. K. K. Dunn, and D. A. Boas, “Detection of multiply scattered light in optical coherence microscopy,” in Waves and Imaging through Complex Media, P. Sebbah, ed. (Kluwer Academic, Dordrecht, The Netherlands, 2001), pp. 277–298.
  26. M. Born, and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1993).
  27. A. Dubois, A. C. Boccara, and M. Lebec, “Real-time reflectivity and topography imagery of depth-resolved microscopic surfaces,” Opt. Lett. 24, 309–311 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited