OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 5 — Feb. 1, 2002
  • pp: 832–844

All-Optical Code-Division-Multiplexing Technique Supporting Multirate Data Communications and Local-Area-Network Interconnections

Jian-Guo Zhang, Awnashilal B. Sharma, and Wing C. Kwong  »View Author Affiliations


Applied Optics, Vol. 41, Issue 5, pp. 832-844 (2002)
http://dx.doi.org/10.1364/AO.41.000832


View Full Text Article

Acrobat PDF (277 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An efficient all-optical code-division-multiplexing (AOCDM) technique is proposed to support multirate data communications and local-area-network (LAN) interconnections with multiple protocols. To achieve this goal, we use a strict optical orthogonal code (OOC) in multirate AOCDM systems to guarantee that both cross- and autocorrelation constraints are minimum (i.e., 1) for incoherent optical processing. In contrast, the use of a conventional OOC may result in correlation constraints of 2, which in turn can degrade system performance. Moreover, implementation issues on AOCDM systems are discussed. These include the design of low-cost optical transmitters and the trade-off among coherence time, spectral width, and pulse width for AOCDM systems. It is shown that multirate AOCDM systems have a high operation flexibility to support data communications and LAN interconnections of both equal and multiple bit rates. For multirate data transmissions, the proposed system can have a better bandwidth efficiency and a lower bit error rate than a system that uses a conventional OOC.

© 2002 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.1150) Optical devices : All-optical devices
(230.3120) Optical devices : Integrated optics devices

Citation
Jian-Guo Zhang, Awnashilal B. Sharma, and Wing C. Kwong, "All-Optical Code-Division-Multiplexing Technique Supporting Multirate Data Communications and Local-Area-Network Interconnections," Appl. Opt. 41, 832-844 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-5-832


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. R. Prucnal, M. A. Santoro, and T. R. Fan, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. LT-4, 547–554 (1986).
  2. F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: Design, analysis, and applications,” IEEE Trans. Inf. Theory 35, 595–604 (1989).
  3. J. A. Salehi, “Code division multiple access techniques in optical fiber networks—Part I: Fundamental principles,” IEEE Trans. Commun. 37, 824–833 (1989).
  4. J. A. Salehi and C. A. Brackett, “Code division multiple access techniques in optical fiber networks—Part II: Systems performance analysis,” IEEE Trans. Commun. 37, 834–842 (1989).
  5. R. M. Gagliardi, A. J. Mendez, M. R. Dale, and E. Park, “Fiber-optic digital video multiplexing using optical CDMA,” J. Lightwave Technol. 11, 20–26 (1993).
  6. M. Azizoglu, J. A. Salehi, and Y. Li, “Optical CDMA via temporal codes,” IEEE Trans. Commun. 40, 1162–1170 (1992).
  7. A. S. Holmes and R. R. A. Syms, “All-optical CDMA using ‘quasi-prime’ codes,” J. Lightwave Technol. 10, 279–286 (1992).
  8. J.-G. Zhang, “Address codes for use in all-optical CDMA systems,” Electron. Lett. 32, 1154–1156 (1996).
  9. J.-G. Zhang, “Design of a special family of optical CDMA address codes for fully asynchronous data communications,” IEEE Trans. Commun. 47, 967–973 (1999).
  10. J.-G. Zhang, L.-K. Chen, W. C. Kwong, K.-W. Cheung, and A. B. Sharma, “Very-high-speed all-optical code-division multiplexing systems using a 2n prime code,” Eng. Lab. Notes in Opt. Phot. News 10 (2), 1–3 (1999).
  11. C. DeCusatis, Special Issue on Fiber Optic Data Communications, Opt. Eng. 37 (1998) (see, for example, pp. 3082–3099 and pp. 3143–3155).
  12. Y.-Q. Zhang, W. W. Wu, K. S. Kim, R. L. Pickholtz, and J. Ramasastry, “Variable bit-rate video transmission in the broadband ISDN environment,” Proc. IEEE 79, 214–222 (1991).
  13. J. M. Dudley, L. P. Barry, J. D. Harvey, M. D. Thomson, B. C. Thomsen, P. G. Bollond, and R. Leonhardt, “Complete characterization of ultrashort pulse sources at 1550 nm,” IEEE J. Quantum Electron. 35, 441–450 (1999).
  14. M. Jinno, “Correlated and uncorrelated timing jitter in gain-switched laser diodes,” IEEE Photon. Technol. Lett. 5, 1140–1143 (1993).
  15. L. P. Barry, J. Debeau, and R. Boittin, “40 nm tunable source of picosecond pulses at 10 GHz by external injection into a gain-switched FP laser,” in Proceedings of the 20th European Conference on Optical Communication (Istituto Internazionale delle Comunicazioni, Genova, Italy, 1994), pp. 369–372.
  16. Y.-C. Lu, P. Zhou, and J. Cheng, “A directly modulated pulse-compressed and time-multiplexed optical source for high-speed multiple-access networks,” IEEE Photon. Technol. Lett. 5, 905–907 (1993).
  17. P. Gunning, J. K. Lucek, D. G. Moodie, K. Smith, R. P. Davey, S. V. Chernikov, M. J. Guy, J. R. Taylor, and A. S. Siddiqui, “Gain switched DFB laser diode pulse source using continuous wave light injection for jitter suppression and an electroabsorption modulator for pedestal suppression,” Electron. Lett. 32, 1010–1011 (1996).
  18. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Chap. 10, pp. 348–353.
  19. F. Zamkotsian, K. Sato, H. Okamoto, K. Kishi, I. Kotaka, M. Yamamoto, Y. Kondo, H. Yasaka, Y. Yoshikuni, and K. Oe, “Monolithic integration of MQW modulators on an optical multiplexer on InP for 100 Gb/s transmission,” J. Lightwave Technol. 14, 2344–2352 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited