OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 5 — Feb. 1, 2002
  • pp: 909–924

Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from Moderate-Resolution Imaging Spectroradiometer thermal infrared data: extension of a two-step physical algorithm

Xia L. Ma, Zhengming Wan, Christopher C. Moeller, W. Paul Menzel, and Liam E. Gumley  »View Author Affiliations

Applied Optics, Vol. 41, Issue 5, pp. 909-924 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (1755 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An extension to the two-step physical retrieval algorithm was developed. Combined clear-sky multitemporal and multispectral observations were used to retrieve the atmospheric temperature-humidity profile, land-surface temperature, and surface emissivities in the midwave (3–5 µm) and long-wave (8–14.5 µm) regions. The extended algorithm was tested with both simulated and real data from the Moderate-Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator. A sensitivity study and error analysis demonstrate that retrieval performance is improved by the extended algorithm. The extended algorithm is relatively insensitive to the uncertainties simulated for the real observations. The extended algorithm was also applied to real MODIS daytime and nighttime observations and showed that it is capable of retrieving medium-scale atmospheric temperature water vapor and retrieving surface temperature emissivity with retrieval accuracy similar to that achieved by the Geostationary Operational Environmental Satellite (GOES) but at a spatial resolution higher than that of GOES.

© 2002 Optical Society of America

OCIS Codes
(130.3060) Integrated optics : Infrared
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.1030) Spectroscopy : Absorption
(300.2140) Spectroscopy : Emission
(350.5610) Other areas of optics : Radiation

Original Manuscript: July 3, 2001
Revised Manuscript: November 7, 2001
Published: February 10, 2002

Xia L. Ma, Zhengming Wan, Christopher C. Moeller, W. Paul Menzel, and Liam E. Gumley, "Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from Moderate-Resolution Imaging Spectroradiometer thermal infrared data: extension of a two-step physical algorithm," Appl. Opt. 41, 909-924 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Susskind, J. Joiner, M. T. Chahine, “Determination of temperature and moisture profiles in a cloudy atmosphere using AIRS/AMSU,” in High Spectral Resolution Infrared Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 19 of NATO Advanced Science Institute Series (Springer-Verlag, Berlin, 1993), pp. 149–161. [CrossRef]
  2. Z. Wan, Z. L. Li, “A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data,” IEEE Trans. Geosci. Remote Sens. 35, 980–996 (1997). [CrossRef]
  3. L. M. McMillin, “Estimation of sea surface temperatures from two infrared window measurements with different absorption,” J. Geophys. Res. 80, 113–5117 (1975). [CrossRef]
  4. L. M. McMillin, D. S. Crosby, “Theory and validation of the multiple window sea surface temperature technique,” J. Geophys. Res. 89, 3655–3661 (1984). [CrossRef]
  5. C. C. Walton, “Nonlinear multichannel algorithms for estimated sea surface temperature with AVHRR satellite data,” J. Appl. Meteorol. 27, 115–124 (1988). [CrossRef]
  6. N. R. Nalli, W. L. Smith, “Improved sensing of sea surface skin temperature using a physical retrieval method,” J. Geophys. Res. 103, 10527–10542 (1998). [CrossRef]
  7. Z. Wan, J. Dozier, “Land-surface temperature measurement from space: physical principles and inverse modeling,” IEEE Trans. Geosci. Remote Sens. 27, 268–277 (1989). [CrossRef]
  8. J. C. Price, “Land surface temperature measurements from the split window channels of the NOAA-7 AVHRR,” J. Geophys. Res. 79, 5039–5044 (1984).
  9. F. Becker, Z.-L. Li, “Toward a local split window method over land surface,” Int. J. Remote Sens. 11, 369–393 (1990). [CrossRef]
  10. Y. H. Kerr, J. P. Lagouarde, J. Jmbernon, “Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm,” Remote Sens. Environ. 41, 197–209 (1992). [CrossRef]
  11. A. J. Prata, “Land surface temperature derived from the advanced very high resolution radiometer and the along-track scanning radiometer. 2. Experimental results and validation of AVHRR algorithms,” J. Geophys. Res. 99, 13025–13058 (1994). [CrossRef]
  12. Z. Wan, J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996). [CrossRef]
  13. Z.-L. Li, F. Becker, “Feasibility of land surface temperature and emissivity determination form AVHRR data,” Remote Sens. Environ. 43, 67–85 (1993). [CrossRef]
  14. Z.-L. Li, F. Petitcolin, R. Zhang, “A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data,” Sci. China Ser. E 43, 23–33 (2000). [CrossRef]
  15. X. L. Ma, T. J. Schmit, W. L. Smith, “A nonlinear physical retrieval algorithm—its application to the GOES-8/9 sounder,” J. Appl. Meteorol. 38, 501–513 (1999). [CrossRef]
  16. W. L. Smith, H. M. Woolf, A. J. Schriener, “Simultaneous retrieval of surface and atmospheric parameters: a physical and analytically direct approach,” in Advances in Remote Sensing Retrieval Method, A. Deepak, H. E. Flemming, M. T. Chahine, eds. (Deepak, Hampton, Va., 1985), pp. 221–232.
  17. W. L. Smith, H. M. Woolf, H. B. Howell, H.-L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—application to measurements with the high spectral resolution interferometer sounder (HIS),” in Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Flemming, J. S. Theon, eds. (Deepak, Hampton, Va., 1989), pp. 189–202.
  18. W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990). [CrossRef]
  19. W. L. Smith, H. M. Woolf, H. E. Revercomb, “Linear simultaneous solution for temperature and observing constituent profiles from radiance spectra,” Appl. Opt. 30, 1117–1123 (1991). [CrossRef] [PubMed]
  20. W. L. Smith, H. M. Woolf, C. M. Hayden, A. J. Schreiner, “The simultaneous retrieval export package,” in The Technical Proceedings of the Second International TOVS Study Conference (Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wis., 1985), pp. 224–253.
  21. H.-L. Huang, “An analysis of the characteristics of the atmospheric profiles obtained with the High-resolution Interferometer Sounder (HIS),” Ph.D. dissertation (University of Wisconsin—Madison, Madison, Wis., 1989).
  22. C. H. Hayden, “GOES-VAS simultaneous temperature-moisture retrieval algorithm,” J. Appl. Meteorol. 27, 705–733 (1988). [CrossRef]
  23. Y. Plokhenko, W. P. Menzel, “The effects of surface reflection on estimating the vertical temperature-humidity distribution from spectral infrared measurements,” J. Appl. Meteorol. 39, 3–14 (2000). [CrossRef]
  24. X. L. Ma, Z. M. Wan, C. C. Moeller, W. P. Menzel, L. E. Gumley, Y. L. Zhang, “Retrieval of geophysical parameters from Moderate Resolution Imaging Spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm,” Appl. Opt. 39, 3537–3550 (2000). [CrossRef]
  25. M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996). [CrossRef]
  26. Z. Wan, “Estimate of noise and systematic error in early thermal infrared data of the Moderate Resolution Imaging Spectroradiometer (MODIS),” J. Remote Sens. Environ. 80, 47–54 (2002). [CrossRef]
  27. W. L. Smith, H. M. Woolf, “The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations,” J. Atmos. Sci. 33, 1127–1140 (1976). [CrossRef]
  28. Z.-L. Li, F. Becker, M. P. Stoll, Z. Wan, Y. Zhang, “Channel selection for soil spectrum reconstruction in 8–13 µm region,” J. Geophys. Res. 104, 22271–22285 (1999). [CrossRef]
  29. W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1: measurement characteristics and data reduction procedures,” NOAA Tech. Memo. National Environmental Satellite Service57, (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.
  30. H. M. Woolf, P. V. Delst, W. J. Zhang, “NOAA-15 HIRS/3 and AMSU transmittance model validation,” in Proceedings of the Tenth International TOVS Study Conference (Bureau of Meteorology Research Center, Melbourne, 1999), pp. 564–573.
  31. W. Smith, A. Larar, D. Zhou, C. Sisko, J. Li, B. Huang, H. Howell, H. Revercomb, D. Cousins, M. Gazarik, D. Mooney, S. Mango, “NAST-I: results from revolutionary aircraft sounding spectrometer,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed. Proc. SPIE3756, 2–8 (1999). [CrossRef]
  32. J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 µm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992). [CrossRef]
  33. J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 µm atmospheric window,” Remote Sens. Environ. 47, 345–361 (1994). [CrossRef]
  34. W. L. Smith, W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “The retrieval of planetary layer structure using ground-based infrared spectral radiance measurements,” J. Atmos. Ocean. Technol. 16, 323–333 (1999). [CrossRef]
  35. W. F. Feltz, W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “Meteorological applications of temperature and water vapor retrieval from the ground-based atmospheric emitted radiance interferometer (AERI),” J. Appl. Meteorol. 37, 857–875 (1999). [CrossRef]
  36. T. J. Schmit, W. F. Feltz, W. P. Menzel, J. Jung, A. P. Noel, J. N. Heil, J. P. Nelson, G. S. Wade, “Validation and use of GOES sounder moisture information,” Wea. Forecasting 17, 139–154 (2002). [CrossRef]
  37. J. E. Hoke, N. A. Phillips, G. J. DiMego, J. J. Tuccillo, J. G. Sela, “The regional analysis and forecast system of the National Meteorological Center,” Weather Forecast. 4, 323–334 (1989). [CrossRef]
  38. W. B. Rossow, L. C. Garder, “Selection of a map grid for data analysis and archival,” J. Clim. Appl. Meteorol. 23, 1253–1257 (1984). [CrossRef]
  39. T. H. Painter, D. A. Roberts, R. O. Green, J. Dozier, “The effects of grain size on spectral mixture analysis of snow-covered area from AVIRIS data,” Remote Sens. Environ. 65, 320–332 (1998). [CrossRef]
  40. D. A. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, R. O. Green, “Mapping chaparral in the Santa Monica mountains using multiple endmembers spectral mixture models,” Remote Sens. Environ. 65, 267–279 (1998). [CrossRef]
  41. L. J. Roujean, M. Leroy, P. Y. Deschamps, “A bi-directional reflectance model of the Earth’s surface for the correction of remote sensing data,” J. Geophys. Res. 97, 445–468 (1992). [CrossRef]
  42. W. Wanner, A. H. Strahler, B. Hu, P. Lewis, J.-P. Muller, X. Li, C. Barker-Schaaf, M. Barnsley, “Global retrieval of bi-directional reflectance and albedo over land from EOS MODIS and MISR data: theory and algorithm,” J. Geophys. Res. 102, 17143–17161 (1997). [CrossRef]
  43. W. C. Synder, Z. Wan, “BRDF models to predict spectral reflectance and emissivity in the thermal infrared,” IEEE Trans. Geosci. Remote Sens. 36, 214–225 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited