OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 6 — Feb. 20, 2002
  • pp: 1035–1050

Phase Function Effects on Oceanic Light Fields

Curtis D. Mobley, Lydia K. Sundman, and Emmanuel Boss  »View Author Affiliations

Applied Optics, Vol. 41, Issue 6, pp. 1035-1050 (2002)

View Full Text Article

Acrobat PDF (361 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Numerical simulations show that underwater radiances, irradiances, and reflectances are sensitive to the shape of the scattering phase function at intermediate and large scattering angles, although the exact shape of the phase function in the backscatter directions (for a given backscatter fraction) is not critical if errors of the order of 10% are acceptable. We present an algorithm for generating depth- and wavelength-dependent Fournier-Forand phase functions having any desired backscatter fraction. Modeling of a comprehensive data set of measured inherent optical properties and radiometric variables shows that use of phase functions with the correct backscatter fraction and overall shape is crucial to achieve model-data closure.

© 2002 Optical Societty of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.1350) Scattering : Backscattering

Curtis D. Mobley, Lydia K. Sundman, and Emmanuel Boss, "Phase Function Effects on Oceanic Light Fields," Appl. Opt. 41, 1035-1050 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. D. Mobley and L. K. Sundman, Hydrolight 4.1 Users’ Guide (Sequoia Scientific, Inc., Redmond, Wash., 2000); see also www.sequoiasci.com.
  2. C. D. Mobley and L. K. Sundman, Hydrolight 4.1 Technical Documentation (Sequoia Scientific, Inc., Redmond, Wash., 2000).
  3. T. J. Petzold, “Volume scattering functions for selected ocean waters,” Tech. Rep. SIO 72–78 (Scripps Institution of Oceanography, San Diego, Calif., 1972).
  4. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, andR. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
  5. H. R. Gordon, “Modeling and simulating radiative transfer in the ocean,” in Ocean Optics, R. W. Spinrad, K. L. Carder, and M. J. Perry, ed. (Oxford U. Press, Oxford, UK, 1994), 1–39.
  6. G. N. Plass, G. W. Kattawar, and T. J. Humphreys, “Influence of the oceanic scattering phase function on the radiance,”J. Geophys. Res. 90(C2), 3347–3351 (1985).
  7. H. R. Gordon, “Sensitivity of radiative transfer to small-angle scattering in the ocean: quantitative assessment,”Appl. Opt. 32, 7505–7511 (1993).
  8. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  9. G. Fournier and J. L. Forand, “Analytic phase function for ocean water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 194–201 (1994).
  10. G. Fournier and M. Jonasz, “Computer-based underwater imaging analysis,” in Airborne and In-water Underwater Imaging, G. Gilbert, ed., Proc. SPIE 3761, 62–77 (1999).
  11. G. Fournier, Defense Research Establishment Valcartier, Val-Belair, G3J 1X5, Canada (personal communication, 2000).
  12. L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
  13. G. W. Kattawar, “A three-parameter analytic phase function for multiple scattering calculations,” J. Quant. Spectrosc. Radiat. Transfer 15, 839–849 (1975).
  14. V. I. Haltrin, “Two-term Henyey-Greenstein light scattering phase function for seawater,” in IGARSS ’99: Proceedings of the International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 1423–1425.
  15. A. W. Harrison and C. A. Coombes, “An opaque cloud cover model of sky short wavelength radiance,” Sol. Energy 41, 387–392 (1988).
  16. W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990).
  17. W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13201–13220 (1995); see also www.wetlabs.com.
  18. R. A. Maffione and D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36, 6057–6067 (1997); see also www.hobilabs.com.
  19. C. Moore, M. S. Twardowski, and J. R. V. Zaneveld, “The ECO VSF—a sensor for determination of the volume scattering function in the backward direction,” in Ocean Optics XV, Proceedings on CD (U.S. Office of Naval Research, Ocean, Atmospheric and Space Science and Technology Department, Arlington, Va., 2000); see also www.wetlabs.com.
  20. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in Case I and Case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
  21. O. Ulloa, S. Sathyendranath, and T. Platt, “Effect of the particle-size distribution on the backscattering ratio in seawater,” Appl. Opt. 33, 7070–7077 (1994).
  22. D. Stramski, A. Bricaud, and A. Morel, “A database of single-particle optical properties,” in Ocean Optics XIV, Proceedings on CD (U.S. Office of Naval Research, Ocean, Atmospheric and Space Science and Technology Department, Arlington, Va., 1998).
  23. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
  24. M. Lee and M. R. Lewis, “Measurement of the optical volume scattering function in the ocean,” J. Atmos. Oceanic Technol., submitted for publication.
  25. M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Oceanic Technol. 16, 691–707 (1999).
  26. J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XI, G. Gilbert, ed., Proc. SPIE 1750, 187–200 (1994).
  27. C. S. Roesler, Bigelow Laboratory Ocean Sciences, Boothbay Harbor, Maine 04573 (personal communication, 2001).
  28. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
  29. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, a Review; Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983), Vol. 4.
  30. M. J. Perry, Darling Marine Center, University of Maine, Walpole, Maine 04573 (personal communication, 2001).
  31. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm)of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
  32. A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, New York, 1974), pp. 1–24.
  33. H. R. Gordon and W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975).
  34. J. R. V. Zaneveld, E. Boss, and A. Barnard, “Influence of urface waves on measured and modeled irradiance profiles,” Appl. Opt. 40, 1442–1449 (2001).
  35. H. R. Gordon and K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491–500 (1992).
  36. R. A. Leathers, T. V. Downes, and C. D. Mobley, “Self-shading correction for upwelling sea-surface radiance measurements made with buoyed instruments,” Opt. Exp. 8, 561–570 (2001); http://www.opticsexpress.org/oearchive/source/32933.htm.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited