OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 6 — Feb. 20, 2002
  • pp: 1128–1144

Mathematical formulations for the schlieren detection method applied to the measurement of photodeformation

Alain Cournoyer, Pierre Baulaigue, Jacques Bures, Lionel Bertrand, and Roland Occelli  »View Author Affiliations


Applied Optics, Vol. 41, Issue 6, pp. 1128-1144 (2002)
http://dx.doi.org/10.1364/AO.41.001128


View Full Text Article

Enhanced HTML    Acrobat PDF (298 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In a schlieren detection scheme for photodeformation measurements, the divergence of the probe beam that is induced by the axisymmetric but radially inhomogeneous periodic photothermal displacement of the surface of a sample is transformed into an intensity variation by insertion of an iris in front of the detection photodiode. We present three expressions for the intensity profile of a Gaussian laser beam that is reflected by the inhomogeneous photodeformation of a solid. The first expression proceeds from geometrical optics (or photometry), whereas the second one derives from the use of the well-known ABCD law and the third one from diffraction principles. Comparing these formulations of the schlieren signal with their behavior as a function of different geometrical parameters, we obtain the domain of validity of each expression, and we deduce the advantages of the different formalisms.

© 2002 Optical Society of America

OCIS Codes
(350.5340) Other areas of optics : Photothermal effects

History
Original Manuscript: June 21, 2001
Published: February 20, 2002

Citation
Alain Cournoyer, Pierre Baulaigue, Jacques Bures, Lionel Bertrand, and Roland Occelli, "Mathematical formulations for the schlieren detection method applied to the measurement of photodeformation," Appl. Opt. 41, 1128-1144 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-6-1128


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. G. Choi, G. J. Diebold, “Laser schlieren microphone for optoacoustic spectroscopy,” Appl. Opt. 21, 4087–4091 (1982). [CrossRef] [PubMed]
  2. H. Saito, M. Irikura, M. Haraguchi, M. Fukui, “New type of photothermal spectroscopic technique,” Appl. Opt. 31, 2047–2054 (1992). [CrossRef] [PubMed]
  3. R. Vyas, R. Gupta, “Photothermal lensing spectroscopy in a flowing medium: theory,” Appl. Opt. 27, 4701–4711 (1988). [CrossRef] [PubMed]
  4. J. F. Power, “Pulsed mode thermal lens effect detection in the near field via thermally induced probe bean spatial phase modulation: a theory,” Appl. Opt. 29, 52–63 (1990). [CrossRef] [PubMed]
  5. L. C. M. Miranda, “Photodisplacement spectroscopy of solids: theory,” Appl. Opt. 22, 2882–2886 (1983). [CrossRef] [PubMed]
  6. N. M. Amer, “New approaches to photothermal spectroscopy,” J. Phys. (Paris) Colloq. 44, 185–190 (1983). [CrossRef]
  7. N. M. Amer, M. A. Olmstead, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy of surfaces and thin films,” J. Phys. (Paris) Colloq. 44, 317–319 (1983). [CrossRef]
  8. G. Rousset, L. Bertrand, P. Cielo, “A pulsed thermoelastic analysis of photothermal surface displacements in layered materials,” J. Appl. Phys. 57, 4396–4405 (1985). [CrossRef]
  9. J. Opsal, A. Rosencwaig, D. L. Willenborg, “Thermal-wave detection and thin-film thickness measurements with laser beam deflection,” Appl. Opt. 22, 3169–3176 (1983). [CrossRef] [PubMed]
  10. M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983). [CrossRef]
  11. J. C. Cheng, S.-Y. Zhang, “Three-dimensional theory to study photothermal phenomena of semiconductors II. Modulated photothermal deflection,” J. Appl. Phys. 70, 7007–7013 (1991). [CrossRef]
  12. E. Welsch, “Photothermal surface deformation technique–a goal for nondestructive evaluation in thin-film optics,” J. Mod. Opt. 38, 2159–2176 (1991). [CrossRef]
  13. D. L. Balageas, D. M. Boscher, A. A. Déom, F. Enguehard, “Photoacoustic microscopy by photodeformation applied to thermal diffusitivity determination,” High Temp.-High Pressures 23, 517–528 (1991).
  14. B. Li, Z. Zhen, S. He, “Modulated photothermal deformation in solids,” J. Phys. D 24, 2196–2201 (1991). [CrossRef]
  15. M. A. Olmstead, N. M. Amer, “Direct measurement of the photothermal displacement of Si(111) 2 × 1 surface-state absorption by use of photothermal displacement spectroscopy,” Phys. Rev. Lett. 52, 1148–1151 (1984). [CrossRef]
  16. A. Déom, D. Boscher, D. Balageas, “Micrometer photoacoustic imaging by photodeformation: application to carbon-carbon composites,” Photoacoustic and Photothermal0 Phenomena II, Vol. 62 of Springer Series in Optical Sciences ,J. C. Murphy, J. W. Maclachlan-Spicer, L. Aamodt, B. S. H. Royce, eds. (Springer-VerlagNew York, 1990), pp.13–16. [CrossRef]
  17. G. Amato, G. Benedetto, L. Boarino, R. Spagnolo, “Temperature dependence of photothermal displacement signal in silicon,” J. Mod. Opt. 39, 1803–1809 (1992). [CrossRef]
  18. A. C. Tam, “Applications of Photoacoustic Sensing Techniques,” Rev. Mod. Phys. 58, 381–431 (1986). [CrossRef]
  19. P. K. Kuo, and M. Munidasa, “Single beam interferometry of a thermal bump: I. Experiment,” in Review of Progress in Quantitative NDE, D. O. Thompson, D. E. Chimenti, eds. 8th ed. (Plenum, New York, 1989), pp. 627–633.
  20. L. D. Favro, M. Munidasa, “Single beam interferometry of a thermal bump: II. theory,” in Review of Progress in Quantitative NDE, D. O. Thompson, D. E. Chimenti, eds 8th ed (Plenum, New York, 1989), pp. 635–640.
  21. P. K. Kuo, L. D. Favro, M. Munidasa, R. L. Thomas, “A single beam interferometry of a thermal bump,” in Photoacoustic and Photothermal Phenomena II, Vol. 62 of Springer Series in Optical Sciences, J. C. Murphy, J. W. Maclachlan-Spicer, L. Aamodt, B. S. H. Royce, eds. (Springer-Verlag, New York, 1990), pp.472–478. [CrossRef]
  22. P. K. Kuo, M. Munidasa, “Single-beam inteferometry of a thermal bump,” Appl. Opt. 29, 5326–5331 (1990). [CrossRef] [PubMed]
  23. P. K. Kuo, S.-Y. Zhang, “A new diffraction theory for the mirage effect and thermal lensing,” in Proceedings of the 9th International Conference on Photoacoustic and Photothermal Phenomena, Nanjing, China, 27–30 June, 1996 (suppl. to Prog. Nat. Sci. vol. 6), S.-Y. Zhangm, ed. (Taylor & Francis, London, 1996), pp. S191–S197.
  24. Y. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, “Diffraction patterns of surface thermal lens,” in Proceedings of the 9th International Conference on Photoacoustic and Photothermal Phenomena, Nanjing, China, 27–30 June, 1996 (suppl. to Prog. Nat. Sci. vol. 6), S.-Y. Zhang, ed. (Taylor & Francis, London, 1996), pp.S202–S205.
  25. L. Chen, K. H. Yang, S. Y. Zhang, “New technique of photodisplacement imaging using one laser for both excitation and detection,” Appl. Phys. Lett. 50, 1349–1351 (1987). [CrossRef]
  26. J.-P. Pérez,Optique Géométrique et Ondulatoire (Masson, Paris, 1988).
  27. K. Marguerre, H.-T. Woernle, Elastic Plates (Blaisdell Publishing, Waltham, Mass., 1969).
  28. A. Yariv, Quantum Electronics (Wiley, New York, 1989).
  29. A. Boivin, Théorie et Calcul des Figures de Diffraction de Révolution (Les Presses de l’Université Laval, Québec, 1964).
  30. M. Abramowitz, I. A. Stegun, eds., Handbook of Mathematical Functions, Dover, New York, 1970).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited