OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 6 — Feb. 20, 2002
  • pp: 1190–1201

Linear Excitation Schemes for IR Planar-Induced Fluorescence Imaging of CO and CO2

Brian J. Kirby and Ronald K. Hanson  »View Author Affiliations


Applied Optics, Vol. 41, Issue 6, pp. 1190-1201 (2002)
http://dx.doi.org/10.1364/AO.41.001190


View Full Text Article

Acrobat PDF (629 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A detailed discussion of linear excitation schemes for IR planar-induced fluorescence (PLIF) imaging of CO and CO2 is presented. These excitation schemes are designed to avoid laser scattering, absorption interferences, and background luminosity while an easily interpreted PLIF signal is generated. The output of a tunable optical parametric amplifier excites combination or overtone transitions in these species, and InSb IR cameras collect fluorescence from fundamental transitions. An analysis of the dynamics of pulsed laser excitation demonstrates that rotational energy transfer is prominent; hence the excitation remains in the linear regime, and standard PLIF postprocessing techniques may be used to correct for laser sheet inhomogeneities. Analysis of the vibrational energy-transfer processes for CO show that microsecond-scale integration times effectively freeze the vibrational populations, and the fluorescence quantum yield following nanosecond-pulse excitation can be made nearly independent of the collisional environment. Sensitivity calculations show that the single-shot imaging of nascent CO in flames is possible. Signal interpretation for CO2 is more complicated, owing to strongly temperature-dependent absorption cross sections and strongly collider-dependent fluorescence quantum yield. These complications limit linear CO2 IR PLIF imaging schemes to qualitative visualization but indicate that increased signal level and improved quantitative accuracy can be achieved through consideration of laser-saturated excitation schemes.

© 2002 Optical Society of America

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(260.2510) Physical optics : Fluorescence
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6340) Spectroscopy : Spectroscopy, infrared

Citation
Brian J. Kirby and Ronald K. Hanson, "Linear Excitation Schemes for IR Planar-Induced Fluorescence Imaging of CO and CO2," Appl. Opt. 41, 1190-1201 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-6-1190


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. J. Kirby and R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999).
  2. B. J. Kirby and R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28, 253–259 (2000).
  3. J. M. Seitzman and R. K. Hanson, “Planar fluorescence imaging in gases,” inExperimental Methods for Flows with Combustion, A. Taylor, ed.(Academic, London, 1993).
  4. M. B. Long, D. C. Fourguette, and M. C. Escoda, “Instantaneous Ramanography of a turbulent diffusion flame,” Opt. Lett. 8, 244–246 (1983).
  5. J. M. Seitzman, J. Haumann, and R. K. Hanson, “Quantitative two-photon LIF imaging of carbon monoxide in combustion gases,” Appl. Opt. 26, 2892–2899 (1987).
  6. N. Georgiev and M. Aldén, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997).
  7. G. Juhlin, H. Neij, M. Versluis, B. Johansson, and M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
  8. W. P. Partridge, J. R. Reisel, and N. M. Laurendeau, “Laser-saturated fluorescence measurements of nitric-oxide in an inverse diffusion flame,” Combust. Flame 116, 282–290 (1999).
  9. M. Alden, P. Grafstrom, H. Lundberg, and S. Svanberg, “Spatially resolved temperature measurements in a flame using laser-excited two-line atomic fluorescence and diode array detection,” Opt. Lett. 8, 241–243 (1983).
  10. B. Hiller and R. K. Hanson, “Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence,” Appl. Opt. 27, 33–48 (1988).
  11. J. Rehm and P. H. Paul, “Reaction rate imaging,” Proc. Combust. Inst. 28, 1775–1782 (2000).
  12. K. Kohse-Hoinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
  13. M. Alden, “Laser spectroscopic techniques for combustion diagnostics,” Combust. Sci. Technol. 149, 1–18 (1999).
  14. B. J. Kirby and R. K. Hanson, “CO2 imaging using saturated planar laser-induced vibrational fluorescence,” Appl. Opt. 20, 6136–6144 (2001).
  15. B. K. McMillin, J. L. Palmer, and R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic crossflow,” Appl. Opt. 32, 7532–7545 (1993).
  16. D. F. Starr and J. K. Hancock, “Vibrational energy transfer in CO2-CO mixtures from 163 to 406°K,” J. Chem. Phys. 63, 4730–4734 (1975).
  17. Jack Finzi and C. Bradley Moore, “Relaxation of CO2(1001), CO2(0201), and N2O(1001) vibrational levels by near-resonant V → V energy transfer,” J. Chem. Phys. 63, 2285–2288 (1975).
  18. L. Doyennette, M. Margottin-Maclou, A. Chakroun, H. Gueguen, and L. Henry, “Vibrational energy transfer from (0001) level of 14N2O and 12CO2 to (m, nl, 1) levels of these molecules and of their isotopic species,” J. Chem. Phys. 62, 440–447 (1975).
  19. J. P. Looney, G. J. Rosasco, L. A. Rahn, W. S. Hurst, and J. W. Hahn, “Comparison of rotational relaxation rate laws to characterize the Raman Q-branch spectrum of CO at 295 K,” Chem. Phys. Lett. 161, 232–238 (1989).
  20. G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, and S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
  21. T. Nakazawa and M. Tanaka, “Measurements of intensities and self- and foreign-gas-broadened half-widths of spectral lines in the CO fundamental band,” J. Quant. Spectrosc. Radiat. Transfer 28, 409–416 (1982).
  22. J. M. Hartmann, L. Rosenmann, M. Y. Perrin, and J. Taine, “Accurate calculated tabulations of CO line broadening by H2O, N2, O2, and CO2 in the 200–3000-K temperature range,” Appl. Opt. 27, 3063–3065 (1988).
  23. J-P. Bouanich, “Determination experimentale des largeurs et des deplacements des raies de la bande 0–2 de CO perturbe par les gas rares (He, Ne, Ar, Kr, Xe),” J. Quant. Spectrosc. Radiat. Transfer 12, 1609–1615 (1972).
  24. J. J. Belbruno, J. Gelfand, and H. Rabitz, “Collision dynamical information from pressure broadening measurements: application to carbon monoxide,” J. Chem. Phys. 78, 3990–3998 (1983).
  25. P. L. Varghese and R. K. Hanson, “Room-temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981).
  26. R. J. Kee, F. M. Rupley, and J. A. Miller, “Chemkin-II: a Fortran chemical kinetics package for the analysis of gas phase chemical kinetics,” Tech. Rep. SAND89–8009B, (Sandia National Laboratories, Livermore, Calif., 1992).
  27. J. T. Yardley, “Introduction to Molecular Energy Transfer (Academic, New York, 1980).
  28. R. C. Millikan and D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39, 3209–3213 (1963).
  29. D. F. Starr, J. K. Hancock, and W. H. Green, “Vibrational deactivation of carbon monoxide by hydrogen and nitrogen from 100 to 650 degrees K,” J. Chem. Phys. 61, 5421–5425 (1974).
  30. T. C. Price, D. C. Allen, and C. J. S. M. Simpson, “Vibrational deactivation of CO (v=1) by O2 measured between 300 and 80 K,” Chem. Phys. Lett. 53, 182–184 (1978).
  31. D. C. Allen, T. J. Price, and C. J. S. M. Simpson, “Low-temperature vibrational-relaxation of carbon-monoxide by light mass species,” Chem. Phys. 41, 449–460 (1979).
  32. M. Cacciatore and G. D. Billing, “Semiclassical calculation of VV and VT rate coefficients in CO,” Chem. Phys. 58, 395–407 (1981).
  33. G. D. Billing and E. R. Fisher, “VV and VT-rate coefficients in N2 by a quantum-classical model,” Chem. Phys. 43, 395–401 (1979).
  34. G. D. Billing and R. E. Kolesnick, “Vibrational relaxation of oxygen. State to state rate constants,” Chem. Phys. Lett. 200, 382–386 (1992).
  35. R. T. V. Kung and R. E. Center, “High temperature vibrational relaxation of H2O by H2O, He, Ar, and N2,” J. Chem. Phys. 62, 2187–2194 (1975).
  36. D. C. Allen, T. J. Price, and C. J. S. M. Simpson, “Vibrational deactivation of the bending mode of CO2 measured between 1500 K and 150 K,” Chem. Phys. Lett. 45, 183–187 (1977).
  37. H. T. Powell, “Vibrational relaxation of carbon monoxide using a pulse discharge II T=100, 300, 500 K,” J. Chem. Phys. 63, 2635–2645 (1975).
  38. G. D. Billing, “Vibration/vibration energy transfer in CO colliding with 14N2, 14N15N and 15N2,” Chem. Phys. 50, 165–173 (1980).
  39. M. Cacciatore, M. Capitelli, and G. D. Billing, “Theoretical semiclassical investigation of the vibrational relaxation of CO colliding with 14N2,” Chem. Phys. 89, 17–31 (1984).
  40. J. C. Stephenson and E. R. Mosburg, “Vibrational energy transfer in CO from 100 to 300 °K,” J. Chem. Phys. 60, 3562–3566 (1974).
  41. B. Wang, Y. Gu, and F. Kong, “Rapid vibrational quenching of CO(V) by H2O and C2H2,” J. Phys. Chem. A 103, 7395–7400 (1999).
  42. A. Chakroun, M. Margottin-Maclou, H. Gueguen, L. Doyennette, and L. Henry, “Vibrational deexcitation of carbon-dioxide and nitrous-oxide excited in (0001) vibrational level and vibrational energy-transfer in CO2-CO from 150 K to 300 K,” Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, 281, 29–32 (1975).
  43. J. Taine, F. Lepoutre, and G. Louis, “Photoacoustic study of collisional deactivation of CO2 by N2, CO, and O2 between 160 K and 375 K,” Chem. Phys. Lett. 58, 611–615 (1978).
  44. J. Taine and F. Lepoutre, “Photoacoustic study of the collisional deactivation of the first vibrational levels of CO2 by N2 and CO,” Chem. Phys. Lett. 65, 554–558 (1979).
  45. J. Taine and F. Lepoutre, “Determination of energy transferred to rotation: translation in deactivation of CO2(0001) by N2 and O2 and of CO(1)by CO2,” Chem. Phys. Lett. 75, 448–451 (1980).
  46. B. S. Wang, Y. S. Gu, and F. N. Kong, “Multilevel vibrational-vibrational (V-V) energy transfer from CO(v) to O2 and CO2,” J. Phys. Chem. A 102, 9367–9371 (1998).
  47. G. E. Caledonia, B. D. Green, and R. E. Murphy, “Study of the vibrational level dependent quenching of CO(v = 1–16) by CO2,” J. Chem. Phys. 71, 4369–4379 (1979).
  48. F. Lepoutre, G. Louis, and J. Taine, “Photoacoustic study of intra-molecular energy transfer in CO2 deactivated by monatomic gases between 153 K and 393 K,” J. Chem. Phys. 70, 2225–2235 (1979).
  49. J. Taine and F. Lepoutre, “Temperature-dependence of the CO2(0110) collisional deactivation rate constants between 170 K and 400 K,” Chem. Phys. Lett. 75, 452–455 (1980).
  50. G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules VII intra- and inter-molecular energy transfer in N2 + CO2,” Chem. Phys. 67, 35–47 (1982).
  51. C. Dang, J. Reid, and B. K. Garside, “Detailed vibrational population distributions in a CO2 laser discharge as measured with a tunable diode laser,” Appl. Phys. B 27, 145–151 (1982).
  52. C. Dang, J. Reid, and B. K. Garside, “Dynamics of the CO2 lower laser levels as measured with a tunable diode laser,” Appl. Phys. B 31, 163–172 (1983).
  53. G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules XI cross sections and rate constants for Ar+CO2,” Chem. Phys. 91, 327–339 (1984).
  54. G. Jolicard and M. Y. Perrin, “Vibrational energy transfers in polyatomic molecules: a vibrational effective Hamiltonian approach for the CO2-Ar system,” Chem. Phys. 123, 249–265 (1988).
  55. G. Millot and C. Roche, “State-to-state vibrational and rotational energy transfer in CO2 gas from time-resolved Raman-infrared double-resonance experiments,” J. Raman Spectrosc. 29, 313–320 (1998).
  56. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
  57. L. S. Rothman and L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide-II,” J. Quant. Spectrosc.Radiat. Transfer 25, 505–524 (1981).
  58. R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, and J.-M. Hartmann, “Line-mixing effects in Q branches of CO2 I: Influence of parity in Δ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
  59. L. Bonamy, J. Bonamy, D. Robert, A. Deroussiaux, and B. Lavorel, “A direct study of the vibrational bending effect in line mixing: the hot degenerate 1110 ← 0110 transition of CO2,” J. Quant. Spectrosc. Radiat. Transfer 57, 341–348 (1997).
  60. N. N. Filippov, J.-P. Bouanich, J.-M. Hartmann, L. Ozanne, C. Boulet, M. V. Tonkov, F. Thibault, and R. Le Doucen, “Line-mixing effects in the 3ν3 band of CO2 perturbed by Ar,” J. Quant. Spectrosc. Radiat. Transfer 55, 307–320 (1996).
  61. L. Rosenmann, J. M. Hartmann, M. Y. Perrin, and J. Taine, “Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, O2 in the 300–2400-K temperature range,” Appl. Opt. 27, 3902–3907 (1988).
  62. M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, and A. Valentin, “Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).
  63. L. L. Strow and B. M. Gentry, “Rotational collisional narrowing in an infrared CO2Q-branch studied with a tunable-diode laser,” J. Chem. Phys. 84, 1149–1156 (1986).
  64. T. Huet, N. Lacome, and A. Lévy, “Line mixing effects in the Q branch of the 100 ← 0110 transition of CO2,” J. Mol. Spectrosc. 138, 141–161 (1989).
  65. R. Berman, P. Duggan, P. M. Sinclair, A. D. May, and J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1+ν2 Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
  66. E. Arié, N. Lacome, P. Arcas, and A. Levy, “Oxygen- and air-broadened linewidths of CO2,” Appl. Opt. 25, 2584–2591 (1986).
  67. L. Rosenmann, J. M. Hartmann, M. Y. Perrin, and J. Taine, “Collisional broadening of CO2 IR lines II Calculations,” J. Chem. Phys. 88, 2999–3006 (1988)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited