OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 6 — Feb. 20, 2002
  • pp: 940–956

Simulation of uplooking and downlooking high-resolution radiance spectra with two different radiative transfer models

Rolando Rizzi, Marco Matricardi, and Ferenc Miskolczi  »View Author Affiliations

Applied Optics, Vol. 41, Issue 6, pp. 940-956 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (373 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurements of up-looking spectral radiances measured during the Convection and Moisture Experiment and down-looking spectral radiances measured at one of the Atmospheric Radiation Measurement sites are compared with simulations with use of two different line-by-line models. Simulations are performed in tightly controlled conditions to verify the behavior of the models. Spectra computed at higher samplings are used to study the spectral structure of the differences between simulations and measurements. A revised list of water vapor spectroscopic parameters is used to test the impact of improved spectroscopic data on the accuracy of the line-by-line calculations. The sensitivity of the results to errors that result from uncertainties in the input atmospheric temperature and humidity profiles is also investigated.

© 2002 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.3920) Atmospheric and oceanic optics : Meteorology
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6340) Spectroscopy : Spectroscopy, infrared

Original Manuscript: September 12, 2000
Revised Manuscript: April 26, 2001
Published: February 20, 2002

Rolando Rizzi, Marco Matricardi, and Ferenc Miskolczi, "Simulation of uplooking and downlooking high-resolution radiance spectra with two different radiative transfer models," Appl. Opt. 41, 940-956 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Eyre, G. A. Kelly, A. P. McNally, E. Anderson, A. Persson, “Assimilation of TOVS radiance information through one-dimensional variational analysis,” Q. J. R. Meteorol. Soc. 119, 1427–1463 (1993). [CrossRef]
  2. F. Rabier, J. Thépaut, P. Courtier, “Extended assimilation and forecast experiments with a four dimensional variational assimilation system,” Q. J. R. Meteorol. Soc. 124, 1861–1887 (1998). [CrossRef]
  3. M. Matricardi, R. Saunders, “Fast radiative transfer model for simulation of infrared atmospheric sounding interferometer radiances,” Appl. Opt. 38, 5679–5691 (1999). [CrossRef]
  4. “Mission IASI,” http://www-projet.cst.cnes.fr:8060/IASI/index.html .
  5. “AIRS - Atmospheric Infrared Sounder Homepage,” http:/www-airs.jpl.nasa.gov/.
  6. V. L. Griffin, A. R. Guillory, M. Susko, J. E. Arnold, “Operations summary for the Convection and Moisture Experiment (CAMEX-1),” NASA Technical memorandum, NASA TM-108445 (National Aeronautics and Space Adminstration, Washington, D.C., 1994).
  7. G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) Program: programmatic background and design of the cloud and radiation test bed,” Bull. Am. Meteor. Soc 75, 1201–1221 (1994). [CrossRef]
  8. W. L. Smith, H. E. Revercomb, H. B. Howell, H. M. Woolf, “HIS: a satellite instrument to observe temperature and moisture profiles with high vertical resolution,” in Proceedings of the Fifth Conference on Atmospheric Radiation, Baltimore, Md., October 31–November 4, 1983 (American Meteorological Society, Boston, 1983).pp. 1–9.
  9. D. P. Edwards, “GENLN2. A general line-by-line atmospheric transmittance and radiance model,” NCAR Technical note, NCAR/TN-367+STR (National Center for Atmospheric Research, Boulder,Colo., 1992).
  10. B. H. Armstrong, “Spectrum line profiles: the Voigt function,” J. Quant. Spectrosc. Radiat. Transfer 7, 66–88 (1967). [CrossRef]
  11. C. Cousin, R. le Doucen, C. Boulet, H. Henry, “Temperature dependence of the absorption in the region beyond the 4.3 um band head of CO2. 2. N2 and O2 broadening,” Appl. Opt. 24, 3899–3907 (1985). [CrossRef] [PubMed]
  12. L. L. Strow, D. C. Tobin, S. E. Hannon, “A compilation of first-order line-mixing coefficients for CO2Q-branches,” J. Quant. Spectrosc. Radiat. Transfer 52, 281–294 (1994). [CrossRef]
  13. S. A. Clough, F. X. Kneizys, R. Davies, R. Gamache, R. Tipping, “Theoretical line shape for H2O vapour: application to the continuum,” in Atmospheric Water Vapour, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, eds. (Academic, New York, 1980), pp. 25–46.
  14. S. A. Clough, F. X. Kneizys, R. W. Davis, “Line shape and the water vapour continuum,” Atmos. Res. 23, 229–241 (1989). [CrossRef]
  15. V. Menoux, R. Le Doucen, C. Boulet, A. Roblin, A. M. Bouchardy, “Collision induced absorption in the fundamental band of N2,” Appl. Opt. 32, 263–268 (1993). [CrossRef] [PubMed]
  16. Y. M. Timofeyev, M. V. Tonkov, “Effect of the induced oxygen absorption band on the transformation of radiation in the 6 µm region of the Earth’s atmosphere,” Izv. Atmos. Oceanic Phys. 14, 437–441 (1978).
  17. C. P. Rinsland, J. S. Zander, J. S. Namkung, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorption observed by the ATMOS instrument,” J. Geophys. Res. 94, 16303–16322 (1989). [CrossRef]
  18. F. Miskolczi, R. Rizzi, R. Guzzi, M. Bonzagni, “A new high resolution transmittance code and its application in the field of remote sensing,” in International Radiation Symposium’88: Current Problems in Atmospheric Radiation, J. Lenoble, ed. (Deepak, Hampton, Va., 1989), pp. 388–391.
  19. F. Miskolczi, M. Bonzagni, R. Guzzi, “High resolution atmospheric radiance-transmittance code (HARTCODE),” in Meteorology and Environmental Sciences (World Scientific, Singapore, 1990), pp. 743–790.
  20. R. Rodriguez, K. W. Jukus, N. Lacome, G. Blanquest, J. Valrand, W. A. Traub, B. Khalil, R. LeDoucent, A. Valentin, C. Camy-Peiret, L. Bonamy, J. M. Hartmann, “Model, software and data base for computation of line mixing effects in infrared Q branchesof atmospheric CO2. I. Symmetric isotopomers,” J. Quant. Spectrosc. Radiat. Transfer 61, 153–184 (1999). [CrossRef]
  21. S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD 3: spectral simulation,” in Proceedings of the International Radiation Symposium IRS’88, Lille, France, 18–24 August 1988, J. Lenoble, J.-F. Geleyn, eds. (Deepak Publishing, Hampton, Va., 1989), pp. 372–375.
  22. Robert Knuteson, Robert Knuteson, Cooperative Institute for Meteorological Satellite Studies, West Dayton Street, Madison, Wis. (personal communication, 1998).
  23. H. F. Revercomb, F. A. Best, R. G. Dedecker, R. P. Dirkx, A. Herbsleb, R. O. Knuteson, J. F. Short, W. L. Smith, “Atmospheric Emitted Radiance Interferometer (AERI) for ARM,” in Fourth Symposium on Global Change Studies, Anaheim, Calif., January 17–22 1993, (American Meteorological Society, Boston, Mass., 1993), 46–49.
  24. “Fall 1997 Integrated IOP”, http://www.arm.gov/docs/iops/1997/sep integrated/index.html .
  25. N. Jaquinet-Husson, E. Arié, J. Ballard, A. Barbe, G. Bjoraker, B. Bonnet, L. R. Brown, C. Camy-Peyret, J. P. Champion, A. Chedin, A. Chursin, C. Clerbaux, G. Duxbury, J.-M. Flaud, N. Fourrié, A. Fayt, G. Graner, R. Gamache, A. Goldman, Vl. Golovko, G. Guelachvili, J. M. Hartmann, J. C. Hilico, J. Hillman, G. Lefévre, E. Lellouch, S. N. Mikhailenko, O. V. Naumenko, V. Nemtchinov, D. A. Newnham, A. Nikitin, J. Orphal, A. Perrin, D. C. Reuter, C. P. Rinsald, L. Rosenmann, L. S. Rothman, N. A. Scott, J. Selby, L. N. Sinitsa, J. M. Sirota, A. M. Smith, K. M. Smith, Vl. G. Tyuterev, R. H. Tipping, S. Urban, P. Varanasi, M. Weber, “The 1997 spectroscopic GEISA databank,” J. Quant. Spectrosc. Radiat. Transfer 62, 205–254 (1999). [CrossRef]
  26. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Watson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  27. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsald, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992). [CrossRef]
  28. R. A. Toth, “Water vapour measurements between 590 and 2582 cm-1: line positions and strengths,” J. Mol. Spectrosc. 190, 379–396 (1998). [CrossRef] [PubMed]
  29. R. A. Toth, L. R. Brown, C. Plymate, “Self-broadned widths and frequency shifts of water vapour lines between 590 and 2400 cm-1,” J. Quant. Spectr. Radiat. Transfer 59, 529–652 (1998). [CrossRef]
  30. R. A. Toth, “Analysis of line positions and strengths of H216O ground and hot bands connecting to interacting upper States: (020), (100), and (001),” J. Mol. Spectrosc. 194, 28–42 (1999). [CrossRef] [PubMed]
  31. R. A. Toth, “HDO and D2O low pressure, long path spectra in the 600–3100 cm-1 region HDO line positions and strength,” J. Mol. Spectrosc. 195, 73–97 (1999). [CrossRef] [PubMed]
  32. R. A. Toth, “Air-and N2-broadening parameters of HDO and D2O, 709 to 1936 cm-1,” J. Mol. Spectrosc. 198, 358–360 (1999). [CrossRef] [PubMed]
  33. R. A. Toth, “Air- and N2-broadening Parameters of water vapor: 604 to 2271 cm-1,” J. Mol. Spectrosc. 201, 218–243 (2000). [CrossRef] [PubMed]
  34. Nicole Husson, Laboratoire de Météorolgie Dynamique, Ecole Polytechnique, Palaiseau Cedex, France (personal communication, 1999).
  35. K. Masuda, T. Takashima, T. Takayama, “Emissivity of pure sea waters for the model of sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988). [CrossRef]
  36. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  37. D. Friedman, “Infrared characteristics of ocean water (1.5–15 µm),” Appl. Opt. 8, 2073–2078 (1969). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited