OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 6 — Feb. 20, 2002
  • pp: 965–973

Homomorphism between Cloudy and Clear Spectral Radiance in the 800-900-cm-1 Atmospheric Window Region

Guido Masiello, Marco Matricardi, Rolando Rizzi, and Carmine Serio  »View Author Affiliations


Applied Optics, Vol. 41, Issue 6, pp. 965-973 (2002)
http://dx.doi.org/10.1364/AO.41.000965


View Full Text Article

Acrobat PDF (168 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The sensitivity of a new algorithm for cloud detection over a sea surface has been assessed on the basis of extensive simulations of clear and cloudy radiance spectra, including water and ice and low- and high-altitude clouds. The new algorithm makes use of autocorrelation and cross correlation between an observed spectrum and either a synthetic or a laboratory spectrum and can be used to determine quantitatively the degree of homogeneity of two spectra in the 800–900-cm−1 region (11.11–12.5 μm). The scheme is intended for high-spectral-resolution observations and could form the basis for an operational stand-alone cloud-detection algorithm for next-generation sounding spectrometers. Application of the scheme to real observations is presented and discussed.

© 2002 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.3920) Atmospheric and oceanic optics : Meteorology
(280.0280) Remote sensing and sensors : Remote sensing and sensors

Citation
Guido Masiello, Marco Matricardi, Rolando Rizzi, and Carmine Serio, "Homomorphism between Cloudy and Clear Spectral Radiance in the 800-900-cm-1 Atmospheric Window Region," Appl. Opt. 41, 965-973 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-6-965


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. Serio, A. M. Lubrano, F. Romano, and H. Shimoda, “Cloud detection over sea surface by use of autocorrelation functions of upwelling infrared spectra in the 800–900-cm−1 window region,” Appl. Opt. 39, 3565–3572 (2000).
  2. H. H. Aumann and R. J. Pagano, “Atmospheric Infrared Sounder on the Earth Observing System,” Opt. Eng. 33, 776–784 (1994).
  3. IASI Science Plan available from the European Organization for Exploitation of Meteorological Satellites, Am Kavalleriesand 31, D-64295 Darmstadt, Germany.
  4. H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, and K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sensing 37, 1496–1507 (1999).
  5. K. F. Evans and G. L. Stephens, “A new polarized atmospheric radiative transfer model,” J. Quant. Spectrosc. Radiat. Transfer 46, 412–423 (1991).
  6. R. Beer and R. H. Norton, “Analysis of spectra using correlation functions,” Appl. Opt. 27, 1255–1261 (1988).
  7. F. Miskolczi, R. Rizzi, R. Guzzi, and M. Bonzagni, “A new high resolution transmittance code and its application in the field of remote sensing,” in IRS’88: Current Problems in Atmospheric Radiation (Deepak Publishing, Hampton, Va., 1989), pp. 388–391.
  8. F. Miskolczi, M. Bonzagni, and R. Guzzi, “High Resolution Atmospheric Radiance-Transmittance Code (HARTCODE),” in Meteorology and Environmental Sciences (World Scientific, Singapore, 1990), pp. 743–790.
  9. R. Rizzi, M. Matricardi, and F. Miskolczi, “Simulation of uplooking and downlooking high-resolution radiance spectra with two different radiative transfer models,” Appl. Opt. 41, 940–956 (2002).
  10. N. Jacquinet-Husson, E. Arié, J. Ballard, A. Barbe, G. Bjoraker, B. Bonnet, L. R. Brown, C. Camy-Peyret, J. P. Champion, A. Chédin, A. Chursin, C. Clerbaux, G. Duxbury, J. M. Flaud, N. Fourrié, A. Fayt, G. Graner, R. Gamache, A. Goldman, V. Golovko, G. Guelachvilli, J. M. Hartmann, J. C. Hilico, J. Hillman, G. Lefevre, E. Lellouch, S. N. Mikhailenko, O. V. Naumenko, V. Nemtchinov, D. A. Newnham, A. Nikitin, J. Orphal, A. Perrin, D. C. Reuter, C. P. Rinsland, L. Rosenmann, L. S. Rothman, N. A. Scott, J. Selby, L. N. Sinitsa, J. M. Sirota, A. M. Smith, K. M. Smith, VI. G. Tyuterev, R. H. Tipping, S. Urban, P. Varanasi, and M. Weber, “The 1997 spectroscopic GEISA databank,” J. Quant. Spectrosc. Radiat. Transfer 62, 205–254 (1999).
  11. S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and water vapor continuum,” Atmos. Res. 23, 229–241 (1989).
  12. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  13. D. J. Segelstein, “The complex refractive index of water,” M.S. thesis (University of Missouri, Kansas City, Mo., 1984).
  14. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
  15. P. Chylek, P. Damiano, and E. P. Shettle, “Infrared emittance of water clouds,” J. Atmos. Sci. 49, 1459–1472 (1992).
  16. K. N. Liou, Radiation and Cloud Processes in the Atmosphere (Oxford University, New York, 1992).
  17. K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
  18. A. M. Lubrano, C. Serio, S. A. Clough, and H. Kobayashi, “Simultaneous inversion for temperature and water vapor from IMG radiances,” Geophys. Res. Lett. 27, 2533–2536 (2000).
  19. S. A. Clough, M. J. Iacono, and J.-L. Moncet, “Line-by-line calculation of atmospheric fluxes and cooling rates. 1. Application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992).
  20. J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 μm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited