OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 6 — Feb. 20, 2002
  • pp: 974–990

Ocean-color optical property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of the Earth’s Reflectances: a comparison study

Menghua Wang, Alice Isaacman, Bryan A. Franz, and Charles R. McClain  »View Author Affiliations


Applied Optics, Vol. 41, Issue 6, pp. 974-990 (2002)
http://dx.doi.org/10.1364/AO.41.000974


View Full Text Article

Enhanced HTML    Acrobat PDF (5961 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe our efforts to study and compare the ocean-color data derived from the Japanese Ocean Color and Temperature Scanner (OCTS) and the French Polarization and Directionality of the Earth’s Reflectances (POLDER). OCTS and POLDER were both on board Japan’s Sun-synchronous Advanced Earth Observing Satellite from August 1996 to June 1997, collecting approximately 10 months of global ocean-color data. This operation provided a unique opportunity for the development of methods and strategies for the merging of ocean-color data from multiple ocean-color sensors. We describe our approach to the development of consistent data-processing algorithms for both OCTS and POLDER and the use of a common in situ data set to calibrate vicariously the two sensors. Therefore the OCTS- and POLDER-measured radiances are bridged effectively through common in situ measurements. With this approach to the processing of data from two different sensors, the only differences in the derived products from OCTS and POLDER are the differences that are inherited from the instrument characteristics. Results show that there are no obvious bias differences between the OCTS- and POLDER-derived ocean-color products, whereas the differences due to noise, which stem from variations in sensor characteristics, are difficult to correct at the pixel level. The ocean-color data from OCTS and POLDER therefore can be compared and merged in the sense that there is no significant bias between two.

© 2002 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: March 7, 2001
Revised Manuscript: September 19, 2001
Published: January 20, 2002

Citation
Menghua Wang, Alice Isaacman, Bryan A. Franz, and Charles R. McClain, "Ocean-color optical property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of the Earth’s Reflectances: a comparison study," Appl. Opt. 41, 974-990 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-6-974


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Tanii, T. Machida, H. Ayada, Y. Katsuyama, J. Ishida, N. Iwasaki, Y. Tange, Y. Miyachi, R. Sato, “Ocean Color and Temperature Scanner (OCTS) for ADEOS,” in Future European and Japanese Remote-Sensing Sensors and Programs: Proceedings of the Meeting, Orlando, Fla, April 1, 2, 1991, P. N. Slater, ed. Proc. SPIE1490, 200–206 (1991). [CrossRef]
  2. P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Sèze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32, 598–615 (1994). [CrossRef]
  3. C. R. McClain, G. S. Fargion, “SIMBIOS Project 1999 Annual Report,” SIMBIOS Technical Report Series, NASA Tech. Memo. 1999-209486 (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).
  4. M. Wang, B. A. Franz, “Comparing the ocean color measurements between MOS and SeaWiFS: a vicarious intercalibration approach for MOS,” IEEE Trans. Geosci. Remote Sens. 38, 184–197 (2000). [CrossRef]
  5. G. Zimmermann, A. Neumann, “The Spaceborne imaging spectrometer MOS for ocean remote sensing,” in Proceedings of the 1st International Workshop on MOS-IRS and Ocean Color, Berlin, April 28–30 (Institute of Space Sensor Technology, German Aerospace Center, Berlin, 1997), pp. 1–9.
  6. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, An Overview of SeaWiFS and Ocean Color, Vol. 1 of SeaWiFS Technical Report Series, NASA Tech. Memo. 104566, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).
  7. C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).
  8. D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, C. Trees, “Validation of atmospheric correction over the ocean,” J. Geophys. Res. 102, 17209–17217 (1997). [CrossRef]
  9. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994). [CrossRef] [PubMed]
  10. H. Fukushima, A. Higurashi, Y. Mitomi, T. Nakajima, T. Noguchi, T. Tanaka, M. Toratani, “Correction of atmospheric effects on ADEOS/OCTS ocean color data: algorithm description and evaluation of its performance,” J. Oceanogr. 54, 417–430 (1998). [CrossRef]
  11. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102, 17081–17106 (1997). [CrossRef]
  12. K. Baith, R. Lindsay, G. Fu, C. R. McClain, “Data analysis system developed for ocean color satellite sensors,” Eos Trans. Am. Geophys. Union82 (Eos electronic supplement: http//www.agu.org/eos_elec/00289e.html , May1, 2001).
  13. W. W. Gregg, “Initial analysis of ocean color data from the ocean color and temperature scanner. I. Imagery analysis,” Appl. Opt. 38, 476–485 (1999). [CrossRef]
  14. M. Shimada, H. Oaku, Y. Mitomi, H. Murakami, Y. Nakamura, J. Ishizaka, H. Kawamura, T. Tanaka, M. Kishino, H. Fukushima, “Calibration and validation of the ocean color version-3 product from ADEOS OCTS,” J. Oceanogr. 54, 401–416 (1998). [CrossRef]
  15. F. S. Patt, W. W. Gregg, “Exact closed-form geolocation algorithm for earth survey sensors,” Int. J. Remote Sens. 15, 3719–3734 (1994). [CrossRef]
  16. F. S. Patt, R. H. Woodward, W. W. Gregg, “An automated method for navigation assessment for Earth survey sensors using island targets,” Int. J. Remote Sens. 18, 3311–3336 (1997). [CrossRef]
  17. H. R. Gordon, M. Wang, “Influence of oceanic whitecaps on atmospheric correction of ocean-color sensor,” Appl. Opt. 33, 7754–7763 (1994). [CrossRef] [PubMed]
  18. D. Antoine, A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999). [CrossRef]
  19. H. Yang, H. R. Gordon, “Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance,” Appl. Opt. 36, 7887–7897 (1997). [CrossRef]
  20. M. Wang, “Atmospheric correction of ocean color sensors: computing atmospheric diffuse transmittance,” Appl. Opt. 38, 451–455 (1999). [CrossRef]
  21. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988). [CrossRef]
  22. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters),” J. Geophys. Res. 93, 10749–10768 (1988). [CrossRef]
  23. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998). [CrossRef]
  24. M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations,” Remote Sens. Environ. 67, 348–359 (1999). [CrossRef]
  25. K. Ding, H. R. Gordon, “Analysis of the influence of O2 A-band absorption on atmospheric correction of ocean color imagery,” Appl. Opt. 34, 2068–2080 (1995). [CrossRef] [PubMed]
  26. M. Wang, “Validation study of the SeaWiFS oxygen A-band absorption correction: comparing the retrieved cloud optical thicknesses from SeaWiFS measurements,” Appl. Opt. 38, 937–944 (1999). [CrossRef]
  27. M. Wang, “The SeaWiFS atmospheric correction algorithm updates,” Vol. 9 of SeaWiFS Postlaunch Technical Report Series, NASA Tech. Memo. 2000-206892, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  28. D. A. Siegel, M. Wang, S. Maritorena, W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582–3591 (2000). [CrossRef]
  29. H. R. Gordon, M. Wang, “Surface roughness considerations for atmospheric correction of ocean color sensors. 1. the Rayleigh scattering component,” Appl. Opt. 31, 4247–4260 (1992). [CrossRef] [PubMed]
  30. M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: including effects of ocean surface roughness,” Int. J. Remote Sens. (to be published).
  31. M. Wang, S. Bailey, “Correction of the sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40, 4790–4798.
  32. R. Frouin, M. Schwindling, P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near infrared: in situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14361–14371 (1996). [CrossRef]
  33. K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: instrumentation, calibration, and performance in coastal waters,” J. Atmos. Ocean. Tech. 15, 496–509 (1998). [CrossRef]
  34. K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000). [CrossRef]
  35. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214, (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  36. M. Wang, B. A. Franz, R. A. Barnes, C. R. McClain, “Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean,” Appl. Opt. 40, 342–348 (2001). [CrossRef]
  37. B. Fougnie, O. Hagolle, F. Cabot, “In-flight measurement and correction of nonlinearity of the POLDER-1’s sensitivity,” in Proceedings of Physical Measurements and Signatures in Remote Sensing, Aussois, France, January 8–12, 2001 (International Society for Photogrammetry and Remote Sensing, Amsterdam, The Netherlands, 2001), pp. 211–219.
  38. H. R. Gordon, “In-orbit calibration strategy for ocean color sensors,” Remote Sens. Environ. 63, 265–278 (1998). [CrossRef]
  39. W. Robinson, M. Wang, “Vicarious calibration of the SeaWiFS band 7,” Vol 9 of SeaWiFS Postlaunch Technical Report Series, NASA Tech. Memo. 2000-206892, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  40. R. E. Eplee, C. R. McClain, “MOBY Data Analysis for the Vicarious Calibration of SeaWiFS Bands 1-6,” Vol. 9 of SeaWiFS Postlaunch Technical Report Series, NASA Tech. Memo. 2000-206892, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  41. O. Hagolle, P. Goloub, P. Y. Deschamps, H. Cosnefroy, X. Briottet, T. Bailleul, J. M. Nicolas, F. Parol, B. Lafrance, M. Herman, “Results of POLDER in-flight calibration,” IEEE Trans. Geosci. Remote Sens. 37, 1550–1566 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited