OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 7 — Mar. 1, 2002
  • pp: 1291–1296

Liquid-crystal micropolarizer array for polarization-difference imaging

Cindy K. Harnett and Harold. G. Craighead  »View Author Affiliations


Applied Optics, Vol. 41, Issue 7, pp. 1291-1296 (2002)
http://dx.doi.org/10.1364/AO.41.001291


View Full Text Article

Acrobat PDF (385 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fabrication and applications are discussed for a visible-wavelength micropolarizer array consisting of a linear polarizer and a micropatterned liquid-crystal (LC) cell. LC alignment direction is controlled by means of depositing an optically transparent gold film at an oblique angle and coating the surface with an alkanethiol self-assembled monolayer. Microdomains of two perpendicular LC alignment directions are created by photolithography and etching of the gold layer, rotating the substrate 90 deg, and depositing a second oblique gold layer in the etched areas. The resulting array is used for polarization-difference imaging (PDI), a technique that enhances image contrast in the presence of scattering. Images obtained with the array require more processing than do conventional PDI images, but this method eliminates the need for an electronically activated LC filter and is especially suited to systems whose filters are closely integrated with optical sensor arrays.

© 2002 Optical Society of America

OCIS Codes
(100.2550) Image processing : Focal-plane-array image processors
(100.2980) Image processing : Image enhancement
(170.7050) Medical optics and biotechnology : Turbid media
(230.5440) Optical devices : Polarization-selective devices
(310.1860) Thin films : Deposition and fabrication

Citation
Cindy K. Harnett and Harold. G. Craighead, "Liquid-crystal micropolarizer array for polarization-difference imaging," Appl. Opt. 41, 1291-1296 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-7-1291


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. D. Gillian and M. D. Tillin, “Patterned polarization-rotating optical element and method of making the same, and 3D display,” U.S. patent 5,861,931 (19 Jan. 1999).
  2. M. Nishikawa, B. Taheri, J. L. West, and Y. Rennikov, “New photo-aligned multi-domain liquid crystal display formed utilizing a liquid crystal polarizer,” Jpn. J. Appl. Phys. 37, L1393–L1395 (1998).
  3. G. P. Können, Polarized Light in Nature (Cambridge University, Cambridge, UK, 1985), p. 145.
  4. M. P. Rowe, E. N. Pugh, J. S. Tyo, and N. Engheta, “Polarization-difference imaging: a biologically-inspired technique for observation through scattering media,” Opt. Lett. 20, 608–610 (1995).
  5. J. S. Tyo, E. N. Pugh, Jr, and N. Engheta, “Colorimetric representations for use with polarization-difference imaging of objects in scattering media,” J. Opt. Soc. Am. A 15, 367–374 (1998).
  6. J. Guo and D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
  7. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
  8. A. J. Pidduck, S. D. Haslam, G. P. Bryan-Brown, R. Bannister, and I. D. Kitely, “Control of liquid crystal alignment by polyimide surface modification using atomic force microscopy,” Appl. Phys. Lett. 71, 2907–2909 (1997).
  9. W. Bing, M. P. Mahajan, and C. Rosenblatt, “Ultra high resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76, 1240–1242 (2000).
  10. S.-C. A. Lien, P. Chaudhari, J. A. Lacey, R. A. John, and J. L. Speidell, “Active-matrix display using ion-beam-processed polyimide film for liquid crystal alignment,” IBM J. Res. Dev. 42, 537–542 (1998).
  11. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
  12. W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
  13. K. Ichimura, Y. Hayashi, and H. Akiyama, “Photoregulation of in-plane reorientation of liquid crystals by azobenzenes laterally attached to substrate surfaces,” Langmuir 9, 3298–3304 (1993).
  14. Y. Tang, P. Xie, D. Liu, and R. Zhang, “Performance-improved photo-driven liquid crystal cell using azobenzene-grafted ladderlike polysiloxane as command layer,” Macromol. Chem. Phys. 198, 1855–1863 (1997).
  15. C. Wang, H. Fei, J. Xia, Y. Yang, Z. Wei, Q. Yang, and G. Sun, “Optically controlled image storage in azobenzene liquid-crystalline polymer films,” Appl. Phys. B 68, 1117–1120 (1999).
  16. V. K. Gupta and N. L. Abbott, “Design of surfaces for patterned alignment of liquid crystals on planar and curved substrates,” Science 276, 1533–1536 (1997).
  17. J. J. Skaife and N. L. Abbott, “Quantitative characterization of obliquely deposited substrates of gold by atomic force microscopy: influence of substrate topography on anchoring of liquid crystals,” Chem. Mater. 11, 612–623 (1999).
  18. V. K. Gupta and N. L. Abbott, “Azimuthal anchoring of nematic liquid crystals on self-assembled monolayers formed from odd and even alkanethiols,” Phys. Rev. E 54, R4540–R4543 (1996).
  19. E. N. Pugh and D. A. Cameron, “Double cones as a basis for a new type of polarization vision in vertebrates,” Nature 353, 161–164 (1991).
  20. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, ‘ Target detection in optically scattering media by polarization-difference imaging, “Appl. Opt. 35, 1855–1870 (1996).
  21. R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293, 1296–1299 (2001).
  22. J. J. Skaife and N. L. Abbott, “Quantitative interpretation of the optical textures of liquid crystals caused by specific binding of immunoglobulins to surface-bound antigens,” Langmuir 16, 3529–3536 (2000).
  23. V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279, 2077–2080 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited