OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 7 — Mar. 1, 2002
  • pp: 1353–1365

Experimental comparison of a liquid-crystal point-diffraction interferometer (LCPDI) and a commercial phase-shifting interferometer and methods to improve LCPDI accuracy

Mark J. Guardalben, Lutao Ning, Nieraj Jain, Devon J. Battaglia, and Kenneth L. Marshall  »View Author Affiliations


Applied Optics, Vol. 41, Issue 7, pp. 1353-1365 (2002)
http://dx.doi.org/10.1364/AO.41.001353


View Full Text Article

Enhanced HTML    Acrobat PDF (1182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compare the phase measurements of a fused-silica witness sample made with a liquid-crystal point-diffraction interferometer (LCPDI) with measurements made with a Zygo Mark IV xp phase-shifting interferometer and find close agreement. Two phase-shift-error sources in the LCPDI that contribute to measurement discrepancies are frame-to-frame intensity changes caused by the dichroism of the dye and alignment distortions of the host liquid crystal. An empirical model of the phase-shift error caused by the host alignment distortions is presented and used to investigate the performance of two different phase-detection algorithms. It is suggested that by proper choice of LCPDI fabrication parameters and phase-acquisition methods, the device’s accuracy can be significantly improved.

© 2002 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(160.1190) Materials : Anisotropic optical materials
(160.3710) Materials : Liquid crystals
(220.4840) Optical design and fabrication : Testing
(230.3720) Optical devices : Liquid-crystal devices

History
Original Manuscript: July 5, 2001
Revised Manuscript: October 11, 2001
Published: March 1, 2002

Citation
Mark J. Guardalben, Lutao Ning, Nieraj Jain, Devon J. Battaglia, and Kenneth L. Marshall, "Experimental comparison of a liquid-crystal point-diffraction interferometer (LCPDI) and a commercial phase-shifting interferometer and methods to improve LCPDI accuracy," Appl. Opt. 41, 1353-1365 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-7-1353


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. P. Linnik, “Simple interferometer for optical systems evaluation,” C.R. Acad. Sci. (USSR) 1, 208–210 (1933).
  2. R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferometers (telescope testing),” Jpn. J. Appl. Phys. 14, 351–356 (1975).
  3. D. Malacara, Optical Shop Testing, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, New York, 1992).
  4. See, for example, several references in Ref. 6 and S. H. Lee, P. Naulleau, K. A. Goldberg, F. Piao, W. Oldham, J. Bokar, “Phase-shifting point-diffraction interferometry at 193 nm,” Appl. Opt. 39, 5768–5772 (2000), and references therein.
  5. C. R. Mercer, K. Creath, “Liquid-crystal point-diffraction interferometer,” Opt. Lett. 19, 916–918 (1994). [CrossRef] [PubMed]
  6. C. R. Mercer, K. Creath, “Liquid-crystal point-diffraction interferometer for wave-front measurements,” Appl. Opt. 35, 1633–1642 (1996). [CrossRef] [PubMed]
  7. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics XXVI, E. Wolf, ed. (North-Holland, Amsterdam, 1988), Chap. 5, pp. 351–393.
  8. C. R. Mercer, N. Rashidnia, “Common-path phase-stepped interferometer for fluid measurements,” in Eighth International Symposium on Flow Visualization 1998, G. M. Carlomagno, I. Grant, eds. 1998), Vol. CD-ROM, pp. 256.1–256.9. CD-ROM available through http://www.ode-web.demon.co.uk/post-conf-web/flyer.html .
  9. Zygo Mark IV xp, Zygo Corporation, Middlefield, Conn. 06455.
  10. M. J. Guardalben, N. Jain, “Phase shift error as a result of molecular alignment distortions in a liquid-crystal point-diffraction interferometer,” Opt. Lett. 25, 1171–1173 (2000). [CrossRef]
  11. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983). [CrossRef] [PubMed]
  12. P. Hariharan, B. F. Oreb, T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2505 (1987). [CrossRef] [PubMed]
  13. E. Novak, C. Ai, J. C. Wyant, “Transfer function characterization of laser Fizeau interferometer for high-spatial-frequency phase measurements,” in Optical Manufacturing and Testing II, H. P. Stahl, ed., Proc. SPIE3134, 114–121 (1997). [CrossRef]
  14. E. Novak, C. Ai, J. C. Wyant, “Errors caused by nearly parallel optical elements in a laser Fizeau interferometer utilizing strictly coherent imaging,” in Optical Manufacturing and Testing II, H. P. Stahl, ed., Proc. SPIE3134, 456–460 (1997). [CrossRef]
  15. S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “MRF: computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78, 42–48 (1999).
  16. J. Schwider, T. Dresel, B. Manzke, “Some considerations of reduction of reference phase error in phase-stepping interferometry,” Appl. Opt. 38, 655–659 (1999). [CrossRef]
  17. J. van Wingerden, H. J. Frankena, C. Smorenburg, “Linear approximation for measurement errors in phase shifting interferometry,” Appl. Opt. 30, 2718–2829 (1991). [CrossRef] [PubMed]
  18. P. Hariharan, “Digital phase-stepping interferometry: effects of multiply reflected beams,” Appl. Opt. 26, 2506–2507 (1987). [CrossRef] [PubMed]
  19. A. C. Turner, “Ray tracing through the liquid crystal point diffraction interferometer,” in 1998 Summer Research Program for High School Juniors at the University of Rochester’s Laboratory for Laser Energetics, Laboratory for Laser Energetics Report 300, NTIS document DOE/SF/19460-299 (Laboratory for Laser Energetics, Rochester, N.Y., 1998).
  20. R. Rao, “LCPDI modeling,” 1999Summer Research Program for High School Juniors at the University of Rochester’s Laboratory for Laser Energetics, Laboratory for Laser Energetics Report 311, NTIS document DOE/SF/19460-338 (Laboratory for Laser Energetics, Rochester, N.Y., 1999).
  21. K. Hibino, “Error-compensating phase measuring algorithms in a Fizeau interferometer,” Opt. Rev. 6, 529–538 (1999). [CrossRef]
  22. The Orasol dyes were recommended by C. R. Mercer, NASA Glenn Research Center, 2100 Brookpark Road, Cleveland, Ohio 44135 (personal communication, 2000).
  23. E. Prudnikova, B. Umanskii, T. Plyusnina, “Synthesis of new dichroic dyes with negative dichroism for a black mixture,” Mol. Cryst. Liq. Cryst. 332, 37–41 (1999). [CrossRef]
  24. “Design and synthesis of near-infrared absorbing dyes for the liquid crystal point-diffraction interferometer (LCPDI),” Laboratory for Laser Energetics LLE Rev.81, 37–47 (1999), NTIS document DOE/SF/19460-335 (1999). Copies may be obtained from the National Technical Information Service, Springfield, Va. 22161.
  25. K. Hibino, B. F. Oreb, D. I. Farrant, K. G. Larkin, “Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts,” J. Opt. Soc. Am. A 14, 918–930 (1997). [CrossRef]
  26. D. Malacara, M. Servin, Z. Malacara, Interferogram Analysis for Optical Testing, Vol. 61 of Optical Engineering Series, B. J. Thompson, ed. (Marcel Dekker, New York, 1998), pp. 196–199.
  27. H. Zhang, M. J. Lalor, D. R. Burton, “Robust, accurate seven-sample phase-shifting algorithm insensitive to nonlinear phase-shift error and second-harmonic distortion: a comparative study,” Opt. Eng. 38, 1524–1533 (1999). [CrossRef]
  28. S. Garoff, R. B. Meyer, “Electroclinic effect of the A–C phase change in a chiral smectic liquid crystal,” Phys. Rev. A 19, 338–347 (1979). [CrossRef]
  29. A. Sneh, J. Y. Liu, K. M. Johnson, “High-speed analog refractive-index modulator that uses a chiral smectic liquid-crystal,” Opt. Lett. 19, 305–307 (1994). [CrossRef] [PubMed]
  30. K. L. Marshall, M. J. Guardalben, S. M. Corsello, M. S. Moore, I. A. Lippa, R. P. Brecker, “Device applications of highly soluble near-infrared transition metal dyes in liquid crystal hosts,” presented at the OSA Annual Meeting, Providence, R.I., 22–26 October 2000 (Optical Society of America, Washington, D.C., 2000).
  31. O. Mondain-Monval, J. C. Dedieu, T. Gulik-Krzywicki, P. Poulin, “Weak surface energy in nematic dispersions: Saturn ring defects and quadrupolar interactions,” Eur. J. Phys. B 12, 167–170 (1999). [CrossRef]
  32. J. Cognard, “Alignment of nematic liquid crystals and their mixtures,” Mol. Cryst. Liq. Cryst. Suppl. Ser. 1, 1–74 (1982).
  33. J. A. Castellano, “Alignment of liquid crystal molecules on various surfaces: myths, theories, facts,” in Proceedings of the American Chemical Society Symposium on Liquid Crystals and Ordered Fluids, A. C. Griffin, J. F. Johnson, eds. (Plenum, New York, 1984), pp. 763–780. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited