OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 7 — Mar. 1, 2002
  • pp: 1380–1384

Risley prisms to control wave-front tilt and displacement in a vectorial shearing interferometer

G. Garcia-Torales, M. Strojnik, and G. Paez  »View Author Affiliations

Applied Optics, Vol. 41, Issue 7, pp. 1380-1384 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (790 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A pair of thin prisms is used to deviate a light beam without changing the image orientation in a vectorial shearing interferometer. The relative angle between prisms determines the displacement of the wave front and its tilt. The direction of the beam displacement is controlled by means of changing the relative angle between prisms. This system is employed to control the displacement of a sheared wave front as a vector quantity and to introduce a controlled amount of tilt in what we believe is a novel interferometric shearing system. The predicted performance of this wave-front director is confirmed experimentally.

© 2002 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.2740) Optical design and fabrication : Geometric optical design
(220.4880) Optical design and fabrication : Optomechanics

Original Manuscript: December 22, 2000
Revised Manuscript: September 10, 2001
Published: March 1, 2002

G. Garcia-Torales, M. Strojnik, and G. Paez, "Risley prisms to control wave-front tilt and displacement in a vectorial shearing interferometer," Appl. Opt. 41, 1380-1384 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Liepmann, “Wedge plate beam splitter without ghost reflections,” Appl. Opt. 31, 5905–5906 (1992). [CrossRef] [PubMed]
  2. F. A. Rosell, “Prism scanner,” J. Opt. Soc. Am. 50, 521–526 (1960). [CrossRef]
  3. C. T. Amirault, C. A. DiMarzio, “Precision pointing using a dual-wedge scanner,” Appl. Opt. 24, 1302–1308 (1985). [CrossRef] [PubMed]
  4. W. Jenkins, J. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), p. 21.
  5. J. H. Waddell, “Rotating prism design for continuous image compensation cameras,” Appl. Opt. 5, 1211–1223 (1966). [CrossRef] [PubMed]
  6. M. S. Scholl, “Signal generated by an extra-solar-system planet detected by a rotating rotationally shearing interferometer,” J. Opt. Soc. Am. A 13, 1584–1592 (1996). [CrossRef]
  7. P. Hariharan, “Lateral and radial shearing interferometers: a comparison,” Appl. Opt. 27, 3594–3596 (1988). [CrossRef] [PubMed]
  8. J. D. Armitage, A. Lohmann, “Rotary shearing interferometry,” Opt. Acta 12, 185–192 (1965). [CrossRef]
  9. J. Schwinder, “Superposition fringe shear interferometer,” Appl. Opt. 19, 4233–4240 (1980). [CrossRef]
  10. M. Strojnik, G. Paez, “Testing the aspherical surfaces with the differential rotational-shearing interferometer,” in Fabrication and Testing of Aspheres, A. Lindquist, M. Piscotty, J. Taylor, eds., Vol. 24 of OSA Trends in Optics and Photonics series (Optical Society of America, Washington, D.C., 1999), pp. 69–123.
  11. M. V. R. K. Murty, E. C. Hagerott, “Rotational shearing interferometry,” Appl. Opt. 5, 615–620 (1966). [CrossRef] [PubMed]
  12. C. Roddier, F. Roddier, J. Demarcq, “Compact rotational shearing interferometer for astronomical applications,” Opt. Eng. 28, 66–70 (1989). [CrossRef]
  13. P. Groot, “Novel interferometer based on a wedge prism,” Supplement to Appl. Opt. 34, 8068–8069 (1995). [CrossRef]
  14. J. B. Saunders, “Inverting interferometry,” J. Opt. Soc. Am. 45, 133 (1955). [CrossRef]
  15. W. H. Steel, “A radial shear interferometer for use with laser source,” Opt. Acta. 17, 721–724 (1970). [CrossRef]
  16. G. Paez, M. Strojnik, G. Garcı́a Torales, “Vectorial shearing interferometer,” Appl. Opt. 39, 5172–5178 (2000). [CrossRef]
  17. R. S. Sirohi, M. P. Kothiyal, “Double wedge plate shearing interferometer for collimation test,” Appl. Opt. 26, 4054–4055 (1987). [CrossRef] [PubMed]
  18. H. M. Hong, C. Y. Leung, H. C. Huang, S. J. Yang, T. P. Sun, Y. L. Kao, R. H. Liau, F. F. Lu, “Real time image linearization in a rotating prism-pair scanning system by using laser-diode encoding techniques,” Opt. Laser Eng. 17, 467–477 (1997). [CrossRef]
  19. G. Paez, M. Strojnik, “Telescopes,” in Handbook of Optical Engineering, D. Malacara, B. Thompson, eds. (Marcel Dekker, New York, 2001), pp. 207–261.
  20. M. S. Scholl, “Ray trace through a corner cube retroreflector with complex reflection coefficients,” J. Opt. Soc. Am. A 12, 1589–1592 (1995). [CrossRef]
  21. M. S. Scholl, “Recursive exact ray trace equations through the foci of the tilted off-axis confocal prolate spheroids,” J. Mod. Opt. 43, 1583–1588 (1996). [CrossRef]
  22. M. S. Scholl, “Design parameters for a two-mirror telescope for stray-light sensitive infrared applications,”Infrared Phys. Technol. 37, 251–257 (1996). [CrossRef]
  23. M. S. Scholl, G. Paez Padilla, “Using the y, y-bar diagram to control stray light noise in IR systems,” Infrared Phys. Technol. 38, 25–30 (1997). [CrossRef]
  24. W. Mao, Y. Xu, “Distortion of optical wedges with a large angle of incidence in a collimated beam,” Opt. Eng. 38, 580–585 (1999). [CrossRef]
  25. G. Paez, M. Strojnik, “Fringe analysis and phase reconstruction from modulated intensity patterns,” Opt. Lett. 22, 1669–1671 (1997). [CrossRef]
  26. G. Paez, M. Strojnik, “Convergent, recursive phase reconstruction from noisy, modulated intensity patterns using synthetic interferograms,” Opt. Lett. 23, 406–408 (1998). [CrossRef]
  27. M. S. Scholl, “Spatial and temporal effects due to target irradiation: a study,” Appl. Opt. 21, 1615–1620 (1982). [CrossRef] [PubMed]
  28. M. S. Scholl, “Target temperature distribution generated and maintained by a scanning laser beam,” Appl. Opt. 21, 2146–2152 (1982). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited