OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 8 — Mar. 10, 2002
  • pp: 1505–1514

Convergent optical correlator alignment based on frequency filtering

Josep Nicolás, Juan Campos, Claudio Iemmi, Ignacio Moreno, and María J. Yzuel  »View Author Affiliations


Applied Optics, Vol. 41, Issue 8, pp. 1505-1514 (2002)
http://dx.doi.org/10.1364/AO.41.001505


View Full Text Article

Enhanced HTML    Acrobat PDF (1458 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The convergent correlator is widely used but it presents the drawback of the alignment requirements: fine focusing of the input scene Fourier transform on the filter plane, filter centering, scaling the scene Fourier transform to match the filter size, and azimuth matching of the filter with the input scene. We propose a set of tests to obtain a precise alignment of the convergent correlator. These methods are based on frequency filtering properties and they are applicable either for amplitude input or for phase-encoded input. The tests we present allow us to fulfill all the alignment requirements. The theory on which these tests are based is explained. The experimental results obtained during the alignment procedure are presented. We show some additional verifications of the correct alignment of the convergent correlator.

© 2002 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(070.4550) Fourier optics and signal processing : Correlators
(070.6110) Fourier optics and signal processing : Spatial filtering
(100.1160) Image processing : Analog optical image processing
(100.4550) Image processing : Correlators

History
Original Manuscript: May 7, 2001
Revised Manuscript: October 29, 2001
Published: March 10, 2002

Citation
Josep Nicolás, Juan Campos, Claudio Iemmi, Ignacio Moreno, and María J. Yzuel, "Convergent optical correlator alignment based on frequency filtering," Appl. Opt. 41, 1505-1514 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-8-1505


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  2. C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966). [CrossRef] [PubMed]
  3. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989). [CrossRef] [PubMed]
  4. P. Réfrégier, V. Laude, B. Javidi, “Nonlinear joint-transform correlation: an optimal solution for adaptive image discrimination and input noise robustness,” Opt. Lett. 19, 405–407 (1994). [PubMed]
  5. B. V. K. Vijaya Kumar, L. Hassebrook, “Performance measures for correlation filters,” Appl. Opt. 29, 2997–3006 (1990). [CrossRef]
  6. J. L. Horner, P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984). [CrossRef] [PubMed]
  7. P. Réfrégier, “Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency,” Opt. Lett. 16, 829–831 (1991). [CrossRef] [PubMed]
  8. A. VanderLugt, Optical Signal Processing, (Wiley, New York, 1992).
  9. H.-K. Liu, J. A. Davis, R. A. Lilly, “Optical-data-processing properties of a liquid-crystal television spatial light modulator,” Opt. Lett. 10, 635–637 (1985). [CrossRef] [PubMed]
  10. J. C. Kirsch, D. A. Gregory, “Video rate optical correlation using a magneto-optic spatial light modulator,” Opt. Eng. 29 (9), 1122–1128 (1990). [CrossRef]
  11. I. Moreno, J. Campos, M. J. Yzuel, V. Kober, “Implementation of bipolar real-valued input scenes in a real-time optical correlator: application to color pattern recognition,” Opt. Eng. 37, 144–150 (1998). [CrossRef]
  12. A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, M. J. Yzuel, “Quantitative predictions of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40, 2558–3564 (2001). [CrossRef]
  13. R. R. Kallman, D. H. Goldstein, “Phase-encoding input images for optical pattern recognition,” Opt. Eng. 33, 1806–1812 (1994). [CrossRef]
  14. K. Styczynski, J. Campos, M. J. Yzuel, K. Chalasinska-Macukow, “New arrangement for limited intensity pattern recognition with high diffraction efficiency,” Opt. Commun. 118, 193–198 (1995). [CrossRef]
  15. R. W. Cohn, “Pseudorandom encoding of complex-valued functions onto amplitude-coupled phase modulators,” J. Opt. Soc. Am. A 15, 868–883 (1998). [CrossRef]
  16. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38, 5004–5013 (1999). [CrossRef]
  17. A. VanderLugt, “The effects of small displacements of spatial filters,” Appl. Opt. 6, 1221–1225 (1967). [CrossRef]
  18. L. Cai, Y. Jin, S. Zhou, P. Yeh, N. Marzwell, H. Liu, “Translational sensitivity adjustable compact optical correlator and its application for fingerprint recognition,” Opt. Eng. 35, 415–422 (1996). [CrossRef]
  19. M. Montes-Usategui, S. E. Monroe, R. D. Juday, “Automated self-alignment procedure for optical correlators,” Opt. Eng. 36, 1782–1791 (1997). [CrossRef]
  20. F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1995). [CrossRef]
  21. K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990). [CrossRef]
  22. J. A. Coy, M. Zaldarriaga, D. F. Grosz, O. E. Martínez, “Characterization of a liquid crystal television as a programmable spatial light modulator,” Opt. Eng. 35, 15–19 (1996). [CrossRef]
  23. A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39, 3301–3307 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited