OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 9 — Mar. 20, 2002
  • pp: 1595–1600

Comment on “Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems”

Rod Frehlich and Michael J. Kavaya  »View Author Affiliations

Applied Optics, Vol. 41, Issue 9, pp. 1595-1600 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (115 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The explanation proposed by Belmonte and Rye [Appl. Opt. 39, 2401 (2000)] for the difference between simulation and the zero-order theory for heterodyne lidar returns in a turbulent atmosphere is incorrect. The theoretical expansion the authors considered is not developed under a square-law structure-function approximation (random-wedge atmosphere). Agreement between the simulations and the zero-order term of the theoretical expansion is produced for the limit of statistically independent paths (bistatic operation with large transmitter–receiver separation) when the simulations correctly include the large-scale gradients of the turbulent atmosphere.

© 2002 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3640) Atmospheric and oceanic optics : Lidar
(040.2840) Detectors : Heterodyne
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar

Original Manuscript: December 5, 2000
Revised Manuscript: August 20, 2001
Published: March 20, 2002

Rod Frehlich and Michael J. Kavaya, "Comment on “Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems”," Appl. Opt. 41, 1595-1600 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979). [CrossRef]
  2. S. F. Clifford, S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere,” Appl. Opt. 20, 514–516 (1981). [CrossRef] [PubMed]
  3. V. A. Banakh, V. L. Mironov, Lidar in a Turbulent Atmosphere (Artech House, Boston, Mass., 1987).
  4. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991). [CrossRef] [PubMed]
  5. R. G. Frehlich, “Effects of refractive turbulence on coherent laser radar,” Appl. Opt. 32, 2122–2139 (1993). [CrossRef] [PubMed]
  6. R. G. Frehlich, “Simulation of laser propagation in a turbulent atmosphere,” Appl. Opt. 39, 393–397 (2000). [CrossRef]
  7. A. Belmonte, B. J. Rye, “Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems,” Appl. Opt. 39, 2401–2411 (2000). [CrossRef]
  8. R. G. Frehlich, “Effects of refractive turbulence on ground-based verification of coherent Doppler lidar performance,” Appl. Opt. 39, 4237–4246 (2000). [CrossRef]
  9. V. A. Banakh, I. N. Smalikho, C. Werner, “Numerical simulation of the effect of refractive turbulence on coherent lidar return statistics in the atmosphere,” Appl. Opt. 39, 5403–5414 (2000). [CrossRef]
  10. A. Belmonte, “Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance,” Appl. Opt. 39, 5426–5445 (2000). [CrossRef]
  11. Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 1. theory,” Appl. Opt. 29, 4111–4119 (1990). [CrossRef] [PubMed]
  12. V. U. Zavorotnyi, V. I. Klyatskin, V. I. Tatarskii, “Strong fluctuations of the intensity of electromagnetic waves in randomly inhomogeneous media,” Zh. Eksp. Teor. Fiz. 73, 481–497 (1977).
  13. R. Dashen, “Path integrals for waves in random media,” J. Math. Phys. 20, 894–920 (1979). [CrossRef]
  14. J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the fourth moment of waves propagating in random media,” Radio Sci. 21, 929–948 (1986). [CrossRef]
  15. J. Martin, S. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111–2126 (1988). [CrossRef] [PubMed]
  16. J. M. Martin, S. M. Flatté, “Simulation of point-source scintillation through three-dimensional random media,” J. Opt. Soc. Am. A 7, 838–847 (1990). [CrossRef]
  17. Wm. A. Coles, J. P. Filice, R. G. Frehlich, M. Yadlowsky, “Simulation of wave propagation in three-dimensional random media,” Appl. Opt. 34, 2089–2101 (1995). [CrossRef] [PubMed]
  18. R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992). [CrossRef]
  19. S. M. Flatté, J. S. Gerber, “Irradiance-variance behavior by numerical simulation for plane-wave and spherical-wave optical propagation through strong turbulence,” J. Opt. Soc. Am. A 17, 1092–1097 (2000). [CrossRef]
  20. S. M. Wandzura, “Meaning of quadratic structure functions,” J. Opt. Soc. Am. 70, 745–747 (1980). [CrossRef]
  21. V. U. Zavorotnyi, “Strong fluctuations of electromagnetic waves in a random medium with finite longitudinal correlation of the inhomogeneities,” Zh. Eksp. Teor. Fiz. 75, 56–65 (1978).
  22. R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978). [CrossRef]
  23. R. Frehlich, “Laser scintillation measurements of the temperature spectrum in the atmospheric surface layer,” J. Atmos. Sci. 49, 1494–1509 (1992). [CrossRef]
  24. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter, Jerusalem, 1971).
  25. G. R. Ochs, R. J. Hill, “Optical-scintillation method of measuring turbulence inner scale,” Appl. Opt. 24, 2430–2432 (1985). [CrossRef] [PubMed]
  26. R. G. Frehlich, “Variance of focal-plane centroids,” J. Opt. Soc. Am. A 7, 2119–2140 (1990). [CrossRef]
  27. B. J. Rye, R. G. Frehlich, “Optimal truncation of Gaussian beams for coherent lidar using incoherent backscatter,” Appl. Opt. 31, 2891–2899 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited