## Enhanced Autocompensating Quantum Cryptography System

Applied Optics, Vol. 41, Issue 9, pp. 1640-1648 (2002)

http://dx.doi.org/10.1364/AO.41.001640

Acrobat PDF (831 KB)

### Abstract

We have improved the hardware and software of our autocompensating system for quantum key distribution by replacing bulk optical components at the end stations with fiber-optic equivalents and implementing software that synchronizes end-station activities, communicates basis choices, corrects errors, and performs privacy amplification over a local area network. The all-fiber-optic arrangement provides stable, efficient, and high-contrast routing of the photons. The low-bit error rate leads to high error-correction efficiency and minimizes data sacrifice during privacy amplification. Characterization measurements made on a number of commercial avalanche photodiodes are presented that highlight the need for improved devices tailored specifically for quantum information applications. A scheme for frequency shifting the photons returning from Alice’s station to allow them to be distinguished from backscattered noise photons is also described.

© 2002 Optical Society of America

**OCIS Codes**

(030.5260) Coherence and statistical optics : Photon counting

(060.0060) Fiber optics and optical communications : Fiber optics and optical communications

(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems

(230.2240) Optical devices : Faraday effect

(270.5570) Quantum optics : Quantum detectors

**Citation**

Donald S. Bethune, Martha Navarro, and William P. Risk, "Enhanced Autocompensating Quantum Cryptography System," Appl. Opt. **41**, 1640-1648 (2002)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-9-1640

Sort: Year | Journal | Reset

### References

- C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the International Conference on Computer Systems and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.
- C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
- B. Jacobs and J. D. Franson, “Quantum cryptography in free space,” Opt. Lett. 21, 1854–1856 (1996).
- W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, and C. G. Peterson, “Daylight quantum key distribution over 1.6 km,” Phys. Rev. Lett. 84, 5652–5655 (2000).
- J. D. Franson and H. Ives, “Quantum cryptography using optical fibers,” Appl. Opt. 33, 2949–2954 (1994).
- P. Townsend, “Experimental investigation of the performance limits for first telecommunications window quantum cryptography systems,” IEEE Photon. Technol. Lett. 10, 1048–1050 (1998).
- R. J. Hughes, G. L. Morgan, and C. Glen “Quantum key distribution over a 48 km optical fibre network,” J. Modern Opt. 47, 533–547 (2000).
- H. Zbinden, H. B. Pasquinucci, N. Gisin, and G. Ribordy, “Quantum cryptography,” Appl. Phys. B 67, 743–748 (1998).
- A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “‘Plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
- H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, and W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1998).
- D. S. Bethune and W. P. Risk, “An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,” IEEE J. Quantum Electron. 36, 340–347 (2000).
- G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
- M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, and E. Sundberg, “Experiments on long-wavelength (1550 nm) ‘plug and play’ quantum cryptography systems,” Opt. Express 4, 383–387 (1999) (http://www.opticsexpress.org).
- M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
- Canadian Instrumentation & Research Ltd., 1155 Appleby Lane, Unit E8 Burlington, Ontario L7L 5H9, Canada (http://www.cirl.com).
- D. Deutsch, A. Ekert, R. Jozsa, R. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
- E. Biham and T. Mor, “Bounds on information and the security of quantum cryptography,” Phys. Rev. Lett. 79, 4034–4037 (1997).
- D. Mayers and A. Yao, “Quantum cryptography with imperfect apparatus,” in Proc. 39th Annual Symposium on Foundations of Computer Science (IEEE Computer Soc., Los Alamitos, Calif., 1998), pp. 503–509.
- B. A. Slutsky, R. Ramesh, P. C. Sung, and Y. Fainman, “Security of quantum cryptography against individual attacks,” Phys. Rev. A 57, 2383–2398 (1998).
- N. Lütkenhaus, “Quantum key distribution: theory for application,” Appl. Phys. B69, 395–400 (1999).
- N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
- G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
- G. Gilbert and M. Hamrick, “Practical quantum cryptography: a comprehensive analysis (part I),” Mitre Technical Report MTR00W0000052 (Mitre Corporation, McLean, Va., 2000); available at http://xxx.lanl.gov/format/quant-ph/0009027 v4, Sept. 20, 2000).
- F. Zappa, A. L. Lacaita, S. D. Cova, and P. Lovati, “Solid state single photon detectors,” Opt. Eng. 35, 938–945 (1996).
- S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
- G. Ribordy, J. D. Gautier, H. Zbinden, and N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
- A. Karlsson, M. Bourennane, G. Ribordy, H. Zbinden, J. Brendel, J. Rarity, and P. Tapster, “A single photon counter for long haul telecom,” IEEE Circuits Dev. Mag. 15(6), 34–40 (November 1999).
- J. G. Rarity, T. E. Wall, K. D. Ridley, P. C. M. Owens, and P. R. Tapster, “Single-photon counting for the 1300–1600-nm range by use of Peltier cooled and passively quenched InGaAs avalanche photodiodes,” Appl. Opt. 39, 6746–6753 (2000).
- P. A. Hiskett, G. S. Buller, A. Y. Loudon, J. M. Smith, I. Gontijo, A. C. Walker, P. D. Townsend, and M. J. Robertson, “Performance and design of InGaAs/InP photodiodes for single photon counting at 1.55 μm,” Appl. Opt. 39, 6818–6829 (2000).
- L. Duraffourg, J. M. Merolla, J. P. Goedgebuer, N. Butterlin, and W. T. Rhodes, “Photon counting in the 1540 nm wavelength region with a germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
- A. Yoshizawa and H. Tsuchida, “A 1550 nm single photon detector using a thermoelectrically cooled InGaAs avalanche photodiode,” Jpn. J. Appl. Phys. 40, Part 1, 200–201 (2001).
- G. Ribordy, J. Brendel, J-D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
- Fujitsu Compound Semiconductor, Inc., 2355 Zanker Rd., San Jose, Calif. 95131 (http://www.fcsi.fujitsu.com).
- NEC Optoelectronics has now become CEL Inc., California Eastern Laboratories, 4590 Patrick Henry Dr., Santa Clara, Calif. 95054 (http://www.cel.com).
- EG&G Optoelectronics, now a part of Perkin-Elmer Optoelectronics, 22001 Dumberry Rd., Vaudreuil, Quebec J7V 8P7, Canada (http://opto.perkinelmer.com).
- Stanford Research Systems, 1290-D Reamwood Ave., Sunnyvale, Calif. 94089 (http://www.srsys.com).
- Avtech Electrosystems Ltd., P.O. Box 5120, LCD Merivale, Ottawa, Ontario, Canada K2C 3H4 (http://www.avtechpulse.com).
- Agilent Technologies, Headquarters, 395 Page Mill Rd., P.O. Box 10395, Palo Alto, Calif. 94303 (http://www.tm.agilent.com).
- Minicircuits, Headquarters, P.O. Box 350166, Brooklyn, N.Y. 11235 (http://www.minicircuits.com).
- Lecroy Corporation, 700 Chestnut Ridge Road, Chestnut Ridge, N.Y. 10977–6499 (http://www.lecroy.com).
- National Instruments Corporation, 11500 N. Mopac Expressway, Austin, Tex. 78759–3504 (http://www.ni.com).
- Defined in this way, K is proportional to the inverse square of a device’s noise equivalent power, NEP = (hv/QE) × (2D)1/2. For our parameters a K of 20,000 corresponds to an NEP ~5 × 10−18 W/Hz1/2. The reader should bear in mind that this is a gated detection setup, with the signal power confined to time windows that are open for a fraction of time of order 10−3.
- JDS Uniphase Corporation, 210 Baypointe Parkway, San Jose, Calif. 95134 (http://www.jdsuniphase.com).
- Innovative Fibers, now a part of Alcatel Optronics, Route de Villejust, 91625 Nozay Cedex, France (http://www.alcatel.com/telecom/optronics).
- H. A. Haus and C. V. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. QE-12, 531–539 (1976).
- G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
- T. Ergodan, “Fiber grating spectra,” IEEE J. Lightwave Tech. 15, 1277–1294 (1997).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.